Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies

[1]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[2]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[3]  Hisashi Tanigawa,et al.  A Motion Direction Map in Macaque V2 , 2010, Neuron.

[4]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[5]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[6]  Thomas Serre,et al.  Reading the mind's eye: Decoding category information during mental imagery , 2010, NeuroImage.

[7]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[8]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[9]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[10]  S. Osher,et al.  Coordinate descent optimization for l 1 minimization with application to compressed sensing; a greedy algorithm , 2009 .

[11]  Li Fei-Fei,et al.  Towards total scene understanding: Classification, annotation and segmentation in an automatic framework , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[13]  Kendrick N Kay,et al.  I can see what you see , 2009, Nature Neuroscience.

[14]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[15]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[16]  Masa-aki Sato,et al.  Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders , 2008, Neuron.

[17]  Mark W. Woolrich,et al.  Bayesian deconvolution fMRI data using bilinear dynamical systems , 2008, NeuroImage.

[18]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[19]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[20]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[21]  Bartlett W. Mel,et al.  Cue combination and color edge detection in natural scenes. , 2008, Journal of vision.

[22]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[23]  N. Logothetis,et al.  Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. , 2008, Cerebral cortex.

[24]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[25]  Thrasyvoulos N. Pappas,et al.  Structural Similarity Quality Metrics in a Coding Context: Exploring the Space of Realistic Distortions , 2006, IEEE Transactions on Image Processing.

[26]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[27]  Jean-Baptiste Poline,et al.  Inverse retinotopy: Inferring the visual content of images from brain activation patterns , 2006, NeuroImage.

[28]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[29]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[30]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[31]  Karl J. Friston,et al.  Bilinear dynamical systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[33]  Stephen V. David,et al.  Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response , 2004, NeuroImage.

[34]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[35]  Ione Fine,et al.  Surface segmentation based on the luminance and color statistics of natural scenes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  A. T. Smith,et al.  Spatiotemporal Frequency and Direction Sensitivities of Human Visual Areas Measured Using fMRI , 2000, NeuroImage.

[37]  A. Oliva,et al.  Diagnostic Colors Mediate Scene Recognition , 2000, Cognitive Psychology.

[38]  Pedro M. Domingos Why Does Bagging Work? A Bayesian Account and its Implications , 1997, KDD.

[39]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[40]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[42]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[43]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[44]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[45]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[46]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[47]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[48]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[49]  M P Eckert,et al.  Efficient coding of natural time varying images in the early visual system. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[51]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[52]  G A Orban,et al.  Velocity discrimination in central and peripheral visual field. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[53]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[54]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[55]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[56]  D. H. Kelly,et al.  Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[57]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .