Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div)

Given an arbitrary function in H(div), we show that the error attained by the global-best approximation by H(div)-conforming piecewise polynomial Raviart-Thomas-Nedelec elements under additional constraints on the divergence and normal flux on the boundary, is, up to a generic constant, equivalent to the sum of independent local-best approximation errors over individual mesh elements, without constraints on the divergence or normal fluxes. The generic constant only depends on the shape-regularity of the underlying simplicial mesh, the space dimension, and the polynomial degree of the approximations. The analysis also gives rise to a stable, local, commuting projector in H(div), delivering an approximation error that is equivalent to the local-best approximation. We next present a variant of the equivalence result, where robustness of the constant with respect to the polynomial degree is attained for unbalanced approximations. These two results together further enable us to derive rates of convergence of global-best approximations that are fully optimal in both the mesh size h and the polynomial degree p, for vector fields that only feature elementwise the minimal necessary Sobolev regularity. We finally show how to apply our findings to derive optimal a priori hp-error estimates for mixed and least-squares finite element methods applied to a model diffusion problem.

[1]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[2]  Martin Vohralík,et al.  Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..

[3]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[4]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[5]  Martin Vohralík,et al.  Discrete p-robust $$\varvec{H}({{\mathrm{div}}})$$H(div)-liftings and a posteriori estimates for elliptic problems with $$H^{-1}$$H-1 source terms , 2016 .

[6]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[7]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .

[8]  Joachim Schöberl,et al.  Polynomial Extension Operators. Part II , 2009, SIAM J. Numer. Anal..

[9]  C. Carstensen,et al.  Medius analysis and comparison results for first-order finite element methods in linear elasticity , 2015 .

[10]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[11]  Joachim Schöberl,et al.  Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..

[12]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[13]  J. Guermond,et al.  Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity , 2018, 1901.10451.

[14]  Alexandre Ern,et al.  Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .

[15]  Martin W. Licht,et al.  Smoothed projections and mixed boundary conditions , 2017, Math. Comput..

[16]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[17]  Zhiqiang Cai,et al.  Optimal Error Estimate for the Div Least-squares Method with Data f∈L2 and Application to Nonlinear Problems , 2010, SIAM J. Numer. Anal..

[18]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[19]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[20]  C. Canuto,et al.  Convergence and Optimality of hp-AFEM , 2015, 1503.03996.

[21]  Richard S. Falk,et al.  Local bounded cochain projections , 2014, Math. Comput..

[22]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[23]  Joachim Sch Oberl COMMUTING QUASI INTERPOLATION OPERATORS FOR MIXED FINITE ELEMENTS , 2004 .

[24]  Frédéric Hecht,et al.  Quelques propriétés d'approximation des éléments finis de nédélec, application à l'analyse a posteriori , 2007 .

[25]  Joachim Schöberl,et al.  Polynomial extension operators. Part III , 2012, Math. Comput..

[26]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[27]  Norbert Heuer,et al.  A new H(div)-conforming p-interpolation operator in two dimensions , 2009 .

[28]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[29]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[30]  Ricardo H. Nochetto,et al.  A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra , 2012, Computational Methods in Applied Sciences.

[31]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[32]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[33]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[34]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[36]  Andreas Veeser,et al.  Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..

[37]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[38]  Jens Markus Melenk,et al.  On commuting p-version projection-based interpolation on tetrahedra , 2018, Math. Comput..

[39]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[40]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[41]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[42]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[43]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[44]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[45]  Daniela Capatina,et al.  Local Flux Reconstructions for Standard Finite Element Methods on Triangular Meshes , 2016, SIAM J. Numer. Anal..

[46]  Jean-Luc Guermond,et al.  Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes , 2015, Comput. Methods Appl. Math..