暂无分享,去创建一个
[1] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[2] Martin Vohralík,et al. Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..
[3] Jean-Luc Guermond,et al. Finite element quasi-interpolation and best approximation , 2015, 1505.06931.
[4] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[5] Martin Vohralík,et al. Discrete p-robust $$\varvec{H}({{\mathrm{div}}})$$H(div)-liftings and a posteriori estimates for elliptic problems with $$H^{-1}$$H-1 source terms , 2016 .
[6] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[7] Leszek Demkowicz,et al. Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .
[8] Joachim Schöberl,et al. Polynomial Extension Operators. Part II , 2009, SIAM J. Numer. Anal..
[9] C. Carstensen,et al. Medius analysis and comparison results for first-order finite element methods in linear elasticity , 2015 .
[10] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[11] Joachim Schöberl,et al. Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..
[12] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[13] J. Guermond,et al. Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity , 2018, 1901.10451.
[14] Alexandre Ern,et al. Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .
[15] Martin W. Licht,et al. Smoothed projections and mixed boundary conditions , 2017, Math. Comput..
[16] Michael Feischl,et al. Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .
[17] Zhiqiang Cai,et al. Optimal Error Estimate for the Div Least-squares Method with Data f∈L2 and Application to Nonlinear Problems , 2010, SIAM J. Numer. Anal..
[18] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[19] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[20] C. Canuto,et al. Convergence and Optimality of hp-AFEM , 2015, 1503.03996.
[21] Richard S. Falk,et al. Local bounded cochain projections , 2014, Math. Comput..
[22] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[23] Joachim Sch Oberl. COMMUTING QUASI INTERPOLATION OPERATORS FOR MIXED FINITE ELEMENTS , 2004 .
[24] Frédéric Hecht,et al. Quelques propriétés d'approximation des éléments finis de nédélec, application à l'analyse a posteriori , 2007 .
[25] Joachim Schöberl,et al. Polynomial extension operators. Part III , 2012, Math. Comput..
[26] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[27] Norbert Heuer,et al. A new H(div)-conforming p-interpolation operator in two dimensions , 2009 .
[28] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[29] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[30] Ricardo H. Nochetto,et al. A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra , 2012, Computational Methods in Applied Sciences.
[31] Thirupathi Gudi,et al. A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..
[32] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[33] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[34] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[36] Andreas Veeser,et al. Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..
[37] Leszek Demkowicz,et al. H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .
[38] Jens Markus Melenk,et al. On commuting p-version projection-based interpolation on tetrahedra , 2018, Math. Comput..
[39] G. Carey,et al. Least-squares mixed finite elements for second-order elliptic problems , 1994 .
[40] Snorre H. Christiansen,et al. Smoothed projections in finite element exterior calculus , 2007, Math. Comput..
[41] Martin Costabel,et al. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.
[42] Carsten Carstensen,et al. Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..
[43] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[44] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[45] Daniela Capatina,et al. Local Flux Reconstructions for Standard Finite Element Methods on Triangular Meshes , 2016, SIAM J. Numer. Anal..
[46] Jean-Luc Guermond,et al. Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes , 2015, Comput. Methods Appl. Math..