On the MGF and BER of Linear Diversity Schemes in Nakagami Fading Channels with Arbitrary Parameters

In this paper, we explore the relationship between the Lauricella hypergeometric functions (F A , F B , and F D ) and the performances of linear diversity combining schemes in Nakagami fading channels with arbitrary parameters. We consider maximal ratio combining, selection combining, and equal gain combining of an arbitrary number of independent Nakagami faded diversity branches. Specifically, we show that the moment generating function and the average bit error rate of these combining schemes can all be expressed in terms of the Lauricella hypergeometric functions.

[1]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[2]  Valentine A. Aalo,et al.  Another look at the performance of MRC schemes in Nakagami-m fading channels with arbitrary parameters , 2005, IEEE Transactions on Communications.

[3]  Okechukwu C. Ugweje,et al.  Selection diversity for wireless communications in Nakagami-fading with arbitrary parameters , 2001, IEEE Trans. Veh. Technol..

[4]  James S. Harris,et al.  Tables of integrals , 1998 .

[5]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[6]  Harold Exton,et al.  Multiple hypergeometric functions and applications , 1979 .

[7]  Vijay K. Bhargava,et al.  Equal-gain diversity receiver performance in wireless channels , 2000, IEEE Trans. Commun..

[8]  Mohamed-Slim Alouini,et al.  Digital Communications Over Fading Channels (M.K. Simon and M.S. Alouini; 2005) [Book Review] , 2008, IEEE Transactions on Information Theory.

[9]  M. Nakagami The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .

[10]  Hyundong Shin,et al.  On the error probability of binary and M-ary signals in Nakagami-m fading channels , 2004, IEEE Transactions on Communications.

[11]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[12]  George K. Karagiannidis,et al.  Exact evaluation of equal-gain diversity in the presence of Nakagami fading , 2000 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Laurence B. Milstein,et al.  Performance analysis of coded communication systems on Nakagami fading channels with selection combining diversity , 2004, IEEE Transactions on Communications.