Automated Mapping of Montane Snow Cover at Subpixel Resolution from the Landsat Thematic Mapper

A fully automated method uses Landsat Thematic Mapper data to map snow cover in the Sierra Nevada and make quantitative estimates of the fractional snow-covered area within each pixel. We model winter and spring reference scenes as linear mixtures of image end member spectra to produce the response variables for tree-based regression and classification models. Decision trees identify cloud cover and fractional snow-covered area. We test the algorithm on a different Thematic Mapper scene and verify with high- resolution, large-format, color aerial photography. The accuracy of the automated classification of Thematic Mapper data equals that obtainable from the aerial photographs but is faster, cheaper, and covers a vastly larger area. The mapping method is insensitive to the choice of lithologic or vegetation end members, the water equivalent of the snow pack, snow grain size, or local illumination angle.

[1]  Jeff Dozier,et al.  Snow Mapping and Classification from Landsat Thematic Mapper Data , 1987, Annals of Glaciology.

[2]  Allan R. Wilks,et al.  The new S language: a programming environment for data analysis and graphics , 1988 .

[3]  Bruce R. Barkstrom,et al.  Theory of the optical properties of snow , 1974 .

[4]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[5]  Albert Rango,et al.  Application of a Snowmelt-Runoff Model Using Landsat Data , 1979 .

[6]  T. Grenfell,et al.  Spectral albedos of an alpine snowpack , 1981 .

[7]  Peter H. Gleick,et al.  Regional hydrologic consequences of increases in atmospheric CO2 and other trace gases , 1987 .

[8]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[9]  Robert E. Crippen,et al.  The dangers of underestimating the importance of data adjustments in band ratioing , 1988 .

[10]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[11]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[12]  K. Itten,et al.  Satellite Potentials in Snowcover Monitoring and Runoff Prediction , 1976 .

[13]  J. Muller,et al.  Terrestrial remote sensing science and algorithms planned for EOS/MODIS , 1994 .

[14]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[15]  Robert E. Crippen The regression intersection method of adjusting image data for band ratioing , 1987 .

[16]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[17]  J. Dozier,et al.  Rapid calculation of terrain parameters for radiation modeling from digital elevation data , 1990 .

[18]  Albert Rango,et al.  Areal distribution of snow water equivalent evaluated by snow cover monitoring , 1981 .

[19]  R. Usinger,et al.  Sierra Nevada Natural History , 1963 .

[20]  Jeff Dozier,et al.  Snow Reflectance from LANDSAT-4 Thematic Mapper , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Christopher M. Bishop,et al.  Classification and regression , 1997 .

[22]  B. Markham,et al.  Spectral characterization of the LANDSAT Thematic Mapper sensors , 1985 .

[23]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[24]  J. Martinec,et al.  Large-Area Deterministic Simulation of Natural Runoff from Snowmelt Based on Landsat MSS Data , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[25]  B. Tranel The sounds of French: L and R , 1987 .

[26]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[27]  Paul E. Johnson,et al.  Quantitative analysis of planetary reflectance spectra with principal components analysis , 1985 .

[28]  Daryl Pregibon,et al.  Tree-based models , 1992 .

[29]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .

[30]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[31]  Paul T. Tueller,et al.  Diurnal Radiance and Shadow Fluntuations in a Cold Desert Shrub Plant C Community , 1989 .

[32]  Edmund G. Brown,et al.  The California water atlas , 1979 .

[33]  R. G. Crane,et al.  Satellite discrimination of snow/cloud surfaces , 1984 .

[34]  Antonio Ciampi,et al.  Recursive Partition: A Versatile Method for Exploratory-Data Analysis in Biostatistics , 1987 .

[35]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[36]  Melvin B Satterwhite,et al.  Hyperspectral Signatures (400 to 2500 nm) of Vegetation, Minerals, Soils, Rocks, and Cultural Features: Laboratory and Field Measurements , 1990 .

[37]  Brian L. Markham,et al.  Thematic Mapper bandpass solar exoatmospheric irradiances , 1987 .

[38]  John B. Adams,et al.  Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images , 1993 .

[39]  J. Boardman Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.