Algebraic Theory of Two-Grid Methods
暂无分享,去创建一个
[1] Ludmil T. Zikatanov,et al. On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..
[2] Marian Brezina,et al. Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.
[3] P. Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .
[4] S. F. McCormick,et al. Multigrid Methods for Variational Problems: Further Results , 1984 .
[5] Yvan Notay,et al. Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..
[6] J. Mandel. Balancing domain decomposition , 1993 .
[7] Artem Napov,et al. Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..
[8] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..
[11] Yvan Notay,et al. Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..
[12] O. E. Livne,et al. Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..
[13] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[14] H. Yserentant. Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.
[15] A. Brandt. General highly accurate algebraic coarsening. , 2000 .
[16] J. Meijerink,et al. The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients , 2001 .
[17] G. W. Stewart,et al. Matrix algorithms , 1998 .
[18] Thomas A. Manteuffel,et al. Relaxation‐corrected bootstrap algebraic multigrid (rBAMG) , 2012, Numer. Linear Algebra Appl..
[19] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[20] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[21] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[22] L. Hogben. Handbook of Linear Algebra , 2006 .
[23] William L. Briggs,et al. 8. Algebraic Multigrid (AMG) , 2000 .
[24] Yvan Notay,et al. Convergence Analysis of Perturbed Two-Grid and Multigrid Methods , 2007, SIAM J. Numer. Anal..
[25] J. Pasciak,et al. Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .
[26] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[27] Stephen F. McCormick,et al. Multigrid Methods for Variational Problems: General Theory for the V-Cycle , 1985 .
[28] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[29] Cornelis Vuik,et al. A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..
[30] Panayot S. Vassilevski,et al. On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..
[31] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[32] Thomas A. Manteuffel,et al. Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..
[33] J. E. Dendy. Black box multigrid for nonsymmetric problems , 1983 .
[34] Jan Mandel,et al. An algebraic theory for multigrid methods for variational problems , 1988 .
[35] Marian Brezina,et al. Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..
[36] S. F. McCormick. An Algebraic Interpretation of Multigrid Methods , 1982 .
[37] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[38] Robert D. Falgout,et al. Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..
[39] W. Hackbusch. Convergence of multigrid iterations applied to difference equations , 1980 .
[40] O. Axelsson. Iterative solution methods , 1995 .
[41] Yvan Notay,et al. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..
[42] Panayot S. Vassilevski,et al. Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..
[43] Scott P. MacLachlan,et al. Theoretical bounds for algebraic multigrid performance: review and analysis , 2014, Numer. Linear Algebra Appl..
[44] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[45] Jan Mandel,et al. Algebraic study of multigrid methods for symmetric, definite problems , 1988 .
[46] J. Meijerink,et al. An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .
[47] R. Bank,et al. Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .
[48] Cornelis W. Oosterlee,et al. On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..
[49] Cornelis Vuik,et al. A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..
[50] Cornelis Vuik,et al. A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners , 2008, Numer. Linear Algebra Appl..
[51] Robert D. Falgout,et al. Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..
[52] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[53] Robert D. Falgout,et al. Multigrid Smoothers for Ultra-Parallel Computing , 2011 .
[54] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[55] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[56] Artem Napov,et al. Comparison of bounds for V-cycle multigrid , 2010 .
[57] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[58] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[59] Artem Napov,et al. Further comparison of additive and multiplicative coarse grid correction , 2013 .
[60] Thomas A. Manteuffel,et al. Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..
[61] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[62] S. McCormick,et al. Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .
[63] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[64] A. Segal,et al. A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients , 2002 .