Algebraic Theory of Two-Grid Methods

About thirty years ago, Achi Brandt wrote a seminal paper providing a convergence theory for algebraic multigrid methods [Appl. Math. Comput., 19 (1986), pp. 23-56]. Since then, this theory has been improved and extended in a number of ways, and these results have been used in many works to analyze algebraic multigrid methods and guide their developments. This paper makes a concise exposition of the state of the art. Results for symmetric and nonsymmetric matrices are presented in a unified way, highlighting the influence of the smoothing scheme on the convergence estimates. Attention is also paid to sharp eigenvalue bounds for the case where one uses a single smoothing step, allowing straightforward application to deflation-based preconditioners and two-level domain decomposition methods. Some new results are introduced whenever needed to complete the picture, and the material is self-contained thanks to a collection of new proofs, often shorter than the original ones.

[1]  Ludmil T. Zikatanov,et al.  On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..

[2]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[3]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[4]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems: Further Results , 1984 .

[5]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[6]  J. Mandel Balancing domain decomposition , 1993 .

[7]  Artem Napov,et al.  Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..

[8]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[11]  Yvan Notay,et al.  Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..

[12]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[13]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[14]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[15]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[16]  J. Meijerink,et al.  The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients , 2001 .

[17]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[18]  Thomas A. Manteuffel,et al.  Relaxation‐corrected bootstrap algebraic multigrid (rBAMG) , 2012, Numer. Linear Algebra Appl..

[19]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[20]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[21]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[22]  L. Hogben Handbook of Linear Algebra , 2006 .

[23]  William L. Briggs,et al.  8. Algebraic Multigrid (AMG) , 2000 .

[24]  Yvan Notay,et al.  Convergence Analysis of Perturbed Two-Grid and Multigrid Methods , 2007, SIAM J. Numer. Anal..

[25]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[26]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[27]  Stephen F. McCormick,et al.  Multigrid Methods for Variational Problems: General Theory for the V-Cycle , 1985 .

[28]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[29]  Cornelis Vuik,et al.  A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..

[30]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[31]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[32]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[33]  J. E. Dendy Black box multigrid for nonsymmetric problems , 1983 .

[34]  Jan Mandel,et al.  An algebraic theory for multigrid methods for variational problems , 1988 .

[35]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[36]  S. F. McCormick An Algebraic Interpretation of Multigrid Methods , 1982 .

[37]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[38]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..

[39]  W. Hackbusch Convergence of multigrid iterations applied to difference equations , 1980 .

[40]  O. Axelsson Iterative solution methods , 1995 .

[41]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[42]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[43]  Scott P. MacLachlan,et al.  Theoretical bounds for algebraic multigrid performance: review and analysis , 2014, Numer. Linear Algebra Appl..

[44]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[45]  Jan Mandel,et al.  Algebraic study of multigrid methods for symmetric, definite problems , 1988 .

[46]  J. Meijerink,et al.  An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .

[47]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[48]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..

[49]  Cornelis Vuik,et al.  A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..

[50]  Cornelis Vuik,et al.  A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners , 2008, Numer. Linear Algebra Appl..

[51]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[52]  Cornelis Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[53]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultra-Parallel Computing , 2011 .

[54]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[55]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[56]  Artem Napov,et al.  Comparison of bounds for V-cycle multigrid , 2010 .

[57]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[58]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[59]  Artem Napov,et al.  Further comparison of additive and multiplicative coarse grid correction , 2013 .

[60]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[61]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[62]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[63]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[64]  A. Segal,et al.  A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients , 2002 .