Perspective on ionic liquids and ionic liquid membranes

Abstract Ionic liquids can be used in various morphologies and configurations as membrane systems including supported liquid membranes, membrane contactors, and mixed matrix membranes. In each case, the negligible vapor pressure can lead to a highly stable structure since the ionic liquid is non-volatile. This perspective is meant to provide some background information on the use of ionic liquids in membrane systems and a discussion of future opportunities for this technology. Ionic liquids with different physical properties can be synthesized in a wide range of structures. In addition, this platform provides an opportunity to “tune” the physical/chemical properties such as density, viscosity, hydrophobicity, and chemical affinity for specific applications. The use of ionic liquids in membrane systems should see continued growth in the future.

[1]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[2]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[3]  Jason E. Bara,et al.  Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform , 2010 .

[4]  F. Hernández‐Fernández,et al.  On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes , 2008 .

[5]  P. Scovazzo Testing and evaluation of room temperature ionic liquid (RTIL) membranes for gas dehumidification , 2010 .

[6]  Hyunjoon Lee,et al.  Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures: Pyrrolidinium-based ionic liquids as acetylene transport carriers , 2010 .

[7]  R. Noble,et al.  Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes , 2008 .

[8]  Nándor Nemestóthy,et al.  Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids , 2010 .

[9]  Gary A. Baker,et al.  Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation , 2010 .

[10]  M. Matsumoto,et al.  Comparison of solvent extraction and supported liquid membrane permeation using an ionic liquid for concentrating penicillin G , 2007 .

[11]  L. Neves,et al.  Methanol and gas crossover through modified Nafion membranes by incorporation of ionic liquid cations , 2010 .

[12]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[13]  Hideto Matsuyama,et al.  CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane , 2008 .

[14]  L. Neves,et al.  Design and characterisation of Nafion membranes with incorporated ionic liquids cations , 2010 .

[15]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[16]  Paul Scovazzo,et al.  Gas Solubilities in Room-Temperature Ionic Liquids , 2004 .

[17]  Jason E. Bara,et al.  How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation? , 2010 .

[18]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[19]  João G. Crespo,et al.  Swelling of polymeric membranes in room temperature ionic liquids , 2007 .

[20]  Diol-Functionalized Imidazolium-Based Room-Temperature Ionic Liquids with Bis(trifluoromethanesulfonimide) Anions that Exhibit Variable Water Miscibility , 2009 .

[21]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[22]  Š. Schlosser,et al.  Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid , 2008 .

[23]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[24]  Jason E. Bara,et al.  Improving CO2 permeability in polymerized room‐temperature ionic liquid gas separation membranes through the formation of a solid composite with a room‐temperature ionic liquid , 2008 .

[25]  Jason E. Bara,et al.  Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids , 2007 .

[26]  R. Noble,et al.  Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids , 2004 .

[27]  K. Char,et al.  Effect of the polarity of silver nanoparticles induced by ionic liquids on facilitated transport for the separation of propylene/propane mixtures , 2008 .

[28]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[29]  Á. Irabien,et al.  Separation of propylene/propane mixtures using Ag+–RTIL solutions. Evaluation and comparison of the performance of gas–liquid contactors , 2010 .

[30]  Jason E. Bara,et al.  Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes , 2008 .

[31]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[32]  S. Senapati,et al.  Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. , 2009, The journal of physical chemistry. B.

[33]  R. Noble,et al.  Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[34]  R. Noble,et al.  Physically Gelled Ionic Liquids: Solid Membrane Materials with Liquidlike CO2 Gas Transport , 2009 .

[35]  David R. Luebke,et al.  Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C , 2007 .

[36]  F. Hernández‐Fernández,et al.  Tailoring supported ionic liquid membranes for the selective separation of transesterification reaction compounds , 2009 .

[37]  Á. Irabien,et al.  Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids , 2009 .

[38]  R. Noble,et al.  A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials , 2010 .

[39]  Jason E. Bara,et al.  Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2 , 2008 .

[40]  R. Noble,et al.  Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents , 2008 .

[41]  P. Izák,et al.  3D topography design of membranes for enhanced mass transport , 2008 .

[42]  F. Hernández‐Fernández,et al.  A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction , 2007 .

[43]  Wei Li,et al.  Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells , 2010 .

[44]  Dinh Quan Nguyen,et al.  Effect of ester group on the performance of zwitterionic imidazolium compounds as membrane materials for separating alkene/alkane mixtures , 2008 .

[45]  Jason E. Bara,et al.  Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids , 2006 .

[46]  R. Noble,et al.  Effect of “Free” Cation Substituent on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes , 2009 .

[47]  Jason E. Bara,et al.  Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach , 2008 .

[48]  F. Hernández‐Fernández,et al.  A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids , 2007 .

[49]  D. Gin,et al.  Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes , 2007 .

[50]  Wei Zhao,et al.  Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2 , 2010 .

[51]  F. Hernández‐Fernández,et al.  Prediction of the selectivity in the recovery of transesterification reaction products using supported liquid membranes based on ionic liquids , 2008 .