유전자 알고리즘을 이용한 항공기용 가스터빈 엔진의 단일 결함 진단에 대한 연구

Genetic Algorithms(GA) which searches optimum solution using natural selection and the law of heredity has been applied to learning algorithms in order to estimate performance deterioration of the aircraft gas turbine engine. The compressor, gas generator turbine and power turbine are considered for engine performance deterioration and estimation for performance deterioration of a single component at design point was conducted. As a result of that, defect diagnostics has been conducted. The input criteria for the genetic algorithm to guarantee the high stability and reliability was discussed as increasing learning data sets. As a result, the accuracy of defect estimation and diagnostics were verified with its RMS error within 3%.