A Survey of Orthogonal Moments for Image Representation: Theory, Implementation, and Evaluation

Image representation is an important topic in computer vision and pattern recognition. It plays a fundamental role in a range of applications toward understanding visual contents. Moment-based image representation has been reported to be effective in satisfying the core conditions of semantic description due to its beneficial mathematical properties, especially geometric invariance and independence. This article presents a comprehensive survey of the orthogonal moments for image representation, covering recent advances in fast/accurate calculation, robustness/invariance optimization, definition extension, and application. We also create a software package for a variety of widely used orthogonal moments and evaluate such methods in a same base. The presented theory analysis, software implementation, and evaluation results can support the community, particularly in developing novel techniques and promoting real-world applications.

[1]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[2]  Jianfeng Ma,et al.  Quaternion weighted spherical Bessel-Fourier moment and its invariant for color image reconstruction and object recognition , 2019, Inf. Sci..

[3]  Hamid Soltanian-Zadeh,et al.  Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms , 2005, IEEE Transactions on Image Processing.

[4]  Simon Liao,et al.  Image Reconstruction from Orthogonal Fourier-Mellin Moments , 2013, ICIAR.

[5]  Xingming Sun,et al.  Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection , 2017, J. Vis. Commun. Image Represent..

[6]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[7]  Khalid M. Hosny,et al.  Novel fractional-order generic Jacobi-Fourier moments for image analysis , 2020, Signal Process..

[8]  Jan Flusser,et al.  Image features invariant with respect to blur , 1995, Pattern Recognit..

[9]  Qi Zou,et al.  Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Chee-Way Chong,et al.  Translation invariants of Zernike moments , 2003, Pattern Recognit..

[11]  Jan Flusser,et al.  Handling Gaussian blur without deconvolution , 2020, Pattern Recognit..

[12]  Salvatore Tabbone,et al.  Invariant pattern recognition using the RFM descriptor , 2012, Pattern Recognit..

[13]  Xiangyang Luo,et al.  Identifying Computer Generated Images Based on Quaternion Central Moments in Color Quaternion Wavelet Domain , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Rachid Benouini,et al.  Image analysis using new set of separable two-dimensional discrete orthogonal moments based on Racah polynomials , 2017, EURASIP J. Image Video Process..

[15]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[16]  Chee-Way Chong,et al.  Translation and scale invariants of Legendre moments , 2004, Pattern Recognit..

[17]  D. Casasent,et al.  New optical transforms for pattern recognition , 1977, Proceedings of the IEEE.

[18]  Fionn Murtagh,et al.  Wavelet and curvelet moments for image classification: Application to aggregate mixture grading , 2008, Pattern Recognit. Lett..

[19]  Huazhong Shu,et al.  Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments , 2010, Pattern Recognit..

[20]  Guojun Lu,et al.  Shape-based image retrieval using generic Fourier descriptor , 2002, Signal Process. Image Commun..

[21]  Jeng-Shyang Pan,et al.  Geometrically invariant image watermarking using Polar Harmonic Transforms , 2012, Inf. Sci..

[22]  Xinpeng Zhang,et al.  Robust Hashing for Image Authentication Using Zernike Moments and Local Features , 2013, IEEE Transactions on Information Forensics and Security.

[23]  Hans Hagen,et al.  Moment Invariants for Multi-Dimensional Data , 2017 .

[24]  Huazhong Shu,et al.  Image analysis by discrete orthogonal Racah moments , 2007, Signal Process..

[25]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[26]  Whoi-Yul Kim,et al.  A novel approach to the fast computation of Zernike moments , 2006, Pattern Recognit..

[27]  Hua Li,et al.  Differential and integral invariants under Mobius transformation , 2018, PRCV.

[28]  Danilo P. Mandic,et al.  The Theory of Quaternion Matrix Derivatives , 2014, IEEE Transactions on Signal Processing.

[29]  Hassan Qjidaa,et al.  New Algorithm for Large-Sized 2D and 3D Image Reconstruction using Higher-Order Hahn Moments , 2020, Circuits Syst. Signal Process..

[30]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[31]  Thai V. Hoang Image Representations for Pattern Recognition , 2011 .

[32]  Zen Chen,et al.  A Zernike Moment Phase-Based Descriptor for Local Image Representation and Matching , 2010, IEEE Transactions on Image Processing.

[33]  D. Donoho,et al.  Fast and accurate Polar Fourier transform , 2006 .

[34]  Shabana Urooj,et al.  Accurate and Fast Computation of Exponent Fourier Moment , 2017 .

[35]  Bin Xiao,et al.  Image analysis by Bessel-Fourier moments , 2010, Pattern Recognit..

[36]  Soo-Chang Pei,et al.  Image normalization for pattern recognition , 1995, Image Vis. Comput..

[37]  Min Qi,et al.  Image representation by harmonic transforms with parameters in SL(2, R) , 2016, J. Vis. Commun. Image Represent..

[38]  Chun-Wei Tan,et al.  Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features , 2014, IEEE Transactions on Image Processing.

[39]  Chao Shao,et al.  Orthogonal moments based on exponent functions: Exponent-Fourier moments , 2014, Pattern Recognit..

[40]  L. Shao,et al.  From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms , 2014, IEEE Transactions on Cybernetics.

[41]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[42]  Yu Wu,et al.  FFT algorithm of complex exponent moments and its application in image recognition , 2014, Digital Image Processing.

[43]  Hans Hagen,et al.  A Generalization of Moment Invariants on 2D Vector Fields to Tensor Fields of Arbitrary Order and Dimension , 2009, ISVC.

[44]  Bo Yang,et al.  Design of high-order rotation invariants from Gaussian-Hermite moments , 2015, Signal Process..

[45]  Miroslaw Pawlak,et al.  Circularly orthogonal moments for geometrically robust image watermarking , 2007, Pattern Recognit..

[46]  Hassan Qjidaa,et al.  Fast computation of separable two-dimensional discrete invariant moments for image classification , 2015, Pattern Recognit..

[47]  Ming Yu,et al.  Fractional quaternion cosine transform and its application in color image copy-move forgery detection , 2018, Multimedia Tools and Applications.

[48]  Dimitris A. Karras,et al.  A new class of Zernike moments for computer vision applications , 2007, Inf. Sci..

[49]  Amandeep Kaur,et al.  Fast computation of polar harmonic transforms , 2012, Journal of Real-Time Image Processing.

[50]  Chandan Singh,et al.  A high capacity image adaptive watermarking scheme with radial harmonic Fourier moments , 2013, Digit. Signal Process..

[51]  Salvatore Tabbone,et al.  Generic polar harmonic transforms for invariant image description , 2011, 2011 18th IEEE International Conference on Image Processing.

[52]  Jinde Cao,et al.  Constrained Quaternion-Variable Convex Optimization: A Quaternion-Valued Recurrent Neural Network Approach , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[53]  Y. Sheng,et al.  Orthogonal Fourier–Mellin moments for invariant pattern recognition , 1994 .

[54]  Jiangtao Cui,et al.  Moments and moment invariants in the Radon space , 2015, Pattern Recognit..

[55]  Thierry Blu,et al.  The Fourier-Argand Representation: An Optimal Basis of Steerable Patterns , 2020, IEEE Transactions on Image Processing.

[56]  Khalid M. Hosny,et al.  Color face recognition using novel fractional-order multi-channel exponent moments , 2020, Neural Computing and Applications.

[57]  Yujie Liu,et al.  Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition , 2016, CCPR.

[58]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Jiasong Wu,et al.  Fast Computation of Sliding Discrete Tchebichef Moments and Its Application in Duplicated Regions Detection , 2015, IEEE Transactions on Signal Processing.

[60]  François Chaumette,et al.  Image moments: a general and useful set of features for visual servoing , 2004, IEEE Transactions on Robotics.

[61]  Jiwen Lu,et al.  Learning Compact Binary Face Descriptor for Face Recognition , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Chandan Singh,et al.  Fast computation of Jacobi-Fourier moments for invariant image recognition , 2015, Pattern Recognit..

[63]  Jan Flusser,et al.  Projection Operators and Moment Invariants to Image Blurring , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Chandan Singh,et al.  Algorithms for fast computation of Zernike moments and their numerical stability , 2011, Image Vis. Comput..

[65]  Gang Chen,et al.  Color Image Analysis by Quaternion-Type Moments , 2014, Journal of Mathematical Imaging and Vision.

[66]  Weisi Lin,et al.  No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments , 2016, IEEE Transactions on Cybernetics.

[67]  Liang Chen,et al.  Pixel classification based color image segmentation using quaternion exponent moments , 2016, Neural Networks.

[68]  A. Bhatia,et al.  On the circle polynomials of Zernike and related orthogonal sets , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[69]  H. Shu,et al.  Image description with generalized pseudo-Zernike moments. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Xilin Liu,et al.  The modified generic polar harmonic transforms for image representation , 2019, Pattern Analysis and Applications.

[71]  Wang Xiang-yang,et al.  Invariant quaternion radial harmonic Fourier moments for color image retrieval , 2015 .

[72]  Huazhong Shu,et al.  Moment-based approaches in imaging part 3: computational considerations [A Look at...] , 2008, IEEE Engineering in Medicine and Biology Magazine.

[73]  Yue-Nan Li Quaternion Polar Harmonic Transforms for Color Images , 2013, IEEE Signal Processing Letters.

[74]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[75]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[76]  Ahlad Kumar,et al.  Deblurring of motion blurred images using histogram of oriented gradients and geometric moments , 2017, Signal Process. Image Commun..

[77]  Qi Tian,et al.  Towards Reversal-Invariant Image Representation , 2017, International Journal of Computer Vision.

[78]  Xingyuan Wang,et al.  Image Description With Polar Harmonic Fourier Moments , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[79]  Jiasong Wu,et al.  MomentsNet: A simple learning-free method for binary image recognition , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[80]  Qu Ying-Dong,et al.  A fast subpixel edge detection method using Sobel-Zernike moments operator , 2005, Image Vis. Comput..

[81]  Daisuke Kihara,et al.  Comparison of Image Patches Using Local Moment Invariants , 2014, IEEE Transactions on Image Processing.

[82]  Panpan Niu,et al.  Robust and discriminative image representation: fractional-order Jacobi-Fourier moments , 2021, Pattern Recognit..

[83]  Hong-Ying Yang,et al.  Color image zero-watermarking based on fast quaternion generic polar complex exponential transform , 2020, Signal Process. Image Commun..

[84]  Jun Shen Orthogonal Gaussian-Hermite moments for image characterization , 1997, Other Conferences.

[85]  Jiangtao Cui,et al.  Radial Tchebichef moment invariants for image recognition , 2012, J. Vis. Commun. Image Represent..

[86]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[87]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Tengfei Yang,et al.  Image analysis by circularly semi-orthogonal moments , 2016, Pattern Recognit..

[89]  Ming Yang,et al.  Discovery of Collocation Patterns: from Visual Words to Visual Phrases , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[90]  Khalid M. Hosny,et al.  Fast computation of orthogonal Fourier–Mellin moments in polar coordinates , 2009, Journal of Real-Time Image Processing.

[91]  Dimitris E. Koulouriotis,et al.  A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants , 2014, IEEE Transactions on Image Processing.

[92]  Miroslaw Pawlak,et al.  Accurate Computation of Zernike Moments in Polar Coordinates , 2007, IEEE Transactions on Image Processing.

[93]  Dong Xu,et al.  3-D Surface Moment Invariants , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[94]  Qiguang Miao,et al.  Three novel invariant moments based on radon and polar harmonic transforms , 2012 .

[95]  Federico Thomas,et al.  Efficient computation of local geometric moments , 2002, IEEE Trans. Image Process..

[96]  Simon Liao,et al.  A new fast algorithm to compute continuous moments defined in a rectangular region , 2019, Pattern Recognit..

[97]  Ming Zhu,et al.  Quaternion Fourier-Mellin moments for color images , 2011, Pattern Recognit..

[98]  Andrea Vedaldi,et al.  HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[99]  Hua Li,et al.  AMI-Net: Convolution Neural Networks With Affine Moment Invariants , 2018, IEEE Signal Processing Letters.

[100]  Zhengwei Yang,et al.  Cross-Weighted Moments and Affine Invariants for Image Registration and Matching , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[101]  Yi Xu,et al.  Quaternion Convolutional Neural Networks , 2018, ECCV.

[102]  Nicole Vincent,et al.  Shall deep learning be the mandatory future of document analysis problems? , 2019, Pattern Recognit..

[103]  Jan Flusser,et al.  Invariants to convolution with circularly symmetric PSF , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[104]  Xiangyang Wang,et al.  A new robust color image watermarking using local quaternion exponent moments , 2014, Inf. Sci..

[105]  Davide Cozzolino,et al.  Efficient Dense-Field Copy–Move Forgery Detection , 2015, IEEE Transactions on Information Forensics and Security.

[106]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[107]  Jean-Luc Starck,et al.  Deconvolution and Blind Deconvolution in Astronomy , 2007 .

[108]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Surong Hasi,et al.  Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments. , 2004, Applied optics.

[110]  Dong Xu,et al.  3-D Curve Moment Invariants for Curve Recognition , 2006 .

[111]  Mohammed Al-Rawi Fast computation of pseudo Zernike moments , 2009, Journal of Real-Time Image Processing.

[112]  Jiasong Wu,et al.  Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition , 2014, Pattern Recognit..

[113]  Ziliang Ping,et al.  Multidistortion-invariant image recognition with radial harmonic Fourier moments. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[114]  Chandan Singh,et al.  Accurate calculation of high order pseudo-Zernike moments and their numerical stability , 2014, Digit. Signal Process..

[115]  Larry S. Davis,et al.  Closely coupled object detection and segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[116]  C Camacho-Bello,et al.  High-precision and fast computation of Jacobi-Fourier moments for image description. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  Huazhong Shu,et al.  Translation and scale invariants of Tchebichef moments , 2007, Pattern Recognit..

[118]  Hassan Qjidaa,et al.  Fractional-order orthogonal Chebyshev Moments and Moment Invariants for image representation and pattern recognition , 2019, Pattern Recognit..

[119]  Huazhong Shu,et al.  General Form for Obtaining Unit Disc-Based Generalized Orthogonal Moments , 2014, IEEE Transactions on Image Processing.

[120]  M. N. S. Swamy,et al.  Tchebichef and Adaptive Steerable-Based Total Variation Model for Image Denoising , 2019, IEEE Transactions on Image Processing.

[121]  Hon-Son Don,et al.  3-D Moment Forms: Their Construction and Application to Object Identification and Positioning , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Hassan Qjidaa,et al.  Efficient 3D object classification by using direct Krawtchouk moment invariants , 2018, Multimedia Tools and Applications.

[123]  Qi Li,et al.  Dual affine moment invariants , 2019, ArXiv.

[124]  Khalid M. Hosny,et al.  New fractional-order Legendre-Fourier moments for pattern recognition applications , 2020, Pattern Recognit..

[125]  Jianfeng Ma,et al.  PLCOM: Privacy-preserving outsourcing computation of Legendre circularly orthogonal moment over encrypted image data , 2019, Inf. Sci..

[126]  Wang Xing-yuan,et al.  Geometrically invariant image watermarking based on fast Radial Harmonic Fourier Moments , 2016 .

[127]  Bing He,et al.  Weighted spherical Bessel–Fourier image moments , 2018, Cluster Computing.

[128]  Bernd Hamann,et al.  Moment Invariants for the Analysis of 2D Flow Fields , 2007, IEEE Transactions on Visualization and Computer Graphics.

[129]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[130]  Mayank Vatsa,et al.  Image Transformation-Based Defense Against Adversarial Perturbation on Deep Learning Models , 2021, IEEE Transactions on Dependable and Secure Computing.

[131]  Yue Zhang,et al.  Zernike Moment-Based Spatial Image Steganography Resisting Scaling Attack and Statistic Detection , 2019, IEEE Access.

[132]  Dimitris E. Koulouriotis,et al.  Performance evaluation of moment-based watermarking methods: A review , 2012, J. Syst. Softw..

[133]  Hassan Qjidaa,et al.  3D Image Representation Using Separable Discrete Orthogonal Moments , 2019, Procedia Computer Science.

[134]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[135]  Bo Yang,et al.  Rotation of 2D orthogonal polynomials , 2018, Pattern Recognit. Lett..

[136]  Alejandro F. Frangi,et al.  Efficient 3D Geometric and Zernike Moments Computation from Unstructured Surface Meshes , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[138]  Dacheng Tao,et al.  Packing Convolutional Neural Networks in the Frequency Domain , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[139]  Hong-Ying Yang,et al.  Robust and effective multiple copy-move forgeries detection and localization , 2021, Pattern Anal. Appl..

[140]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[141]  Debotosh Bhattacharjee,et al.  LMZMPM: Local Modified Zernike Moment Per-Unit Mass for Robust Human Face Recognition , 2021, IEEE Transactions on Information Forensics and Security.

[142]  Limin Luo,et al.  Moment-Based Approaches in Imaging. 1. Basic Features [A Look At ...] , 2007, IEEE Engineering in Medicine and Biology Magazine.

[143]  Jos Sez-Landete Comments on fast computation of jacobi-Fourier moments for invariant image recognition , 2017 .

[144]  Thomas Bülow,et al.  Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case , 2001, IEEE Trans. Signal Process..

[145]  Zahir M. Hussain,et al.  Higher order orthogonal moments for invariant facial expression recognition , 2010, Digit. Signal Process..

[146]  Gerik Scheuermann,et al.  Moment invariants for 3D flow fields via normalization , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[147]  G. Papakostas Over 50 Years of Image Moments and Moment Invariants , 2014 .

[148]  Linghui Li,et al.  Video Super-Resolution Reconstruction Based on Deep Learning and Spatio-Temporal Feature Self-similarity , 2020 .

[149]  Siamak Khorram,et al.  A feature-based image registration algorithm using improved chain-code representation combined with invariant moments , 1999, IEEE Trans. Geosci. Remote. Sens..

[150]  Huazhong Shu,et al.  Combined Invariants to Similarity Transformation and to Blur Using Orthogonal Zernike Moments , 2011, IEEE Transactions on Image Processing.

[151]  Khalid M. Hosny,et al.  A kernel-based method for fast and accurate computation of PHT in polar coordinates , 2016, Journal of Real-Time Image Processing.

[152]  Yuan Yan Tang,et al.  Quasi Fourier-Mellin Transform for Affine Invariant Features , 2020, IEEE Transactions on Image Processing.

[153]  A. Prata,et al.  Algorithm for computation of Zernike polynomials expansion coefficients. , 1989, Applied optics.

[154]  Jan Flusser,et al.  Tensor Method for Constructing 3D Moment Invariants , 2011, CAIP.

[155]  Xuelong Li,et al.  Zernike-Moment-Based Image Super Resolution , 2011, IEEE Transactions on Image Processing.

[156]  Jan Flusser,et al.  Registration of Images With $N$ -Fold Dihedral Blur , 2015, IEEE Transactions on Image Processing.

[157]  Hua Li,et al.  Fast and Efficient Calculations of Structural Invariants of Chirality , 2017, Pattern Recognit. Lett..

[158]  Jan Flusser,et al.  Affine Moment Invariants of Vector Fields , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[159]  Jian Zou,et al.  Generic orthogonal moments: Jacobi-Fourier moments for invariant image description , 2007, Pattern Recognit..

[160]  Gerik Scheuermann,et al.  Moment Invariants for 3 D Flow Fields , 2014 .

[161]  Salvatore Tabbone,et al.  Generic polar harmonic transforms for invariant image representation , 2014, Image Vis. Comput..

[162]  Rachid Benouini,et al.  Image recognition using new set of separable three-dimensional discrete orthogonal moment invariants , 2020, Multimedia Tools and Applications.

[163]  Khalid M. Hosny,et al.  New set of multi-channel orthogonal moments for color image representation and recognition , 2019, Pattern Recognit..

[164]  Bin Xiao,et al.  Radial shifted Legendre moments for image analysis and invariant image recognition , 2014, Image Vis. Comput..

[165]  Dariusz Sychel,et al.  Constant-Time Calculation of Zernike Moments for Detection with Rotational Invariance , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[166]  Huazhong Shu,et al.  Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications , 2010, Image Vis. Comput..

[167]  Khalid M. Hosny,et al.  Novel fractional-order polar harmonic transforms for gray-scale and color image analysis , 2020, J. Frankl. Inst..

[168]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[169]  Ching Y. Suen,et al.  Towards Robust Pattern Recognition: A Review , 2020, Proceedings of the IEEE.

[170]  Dimitrios Tzovaras,et al.  Gait Recognition Using Compact Feature Extraction Transforms and Depth Information , 2007, IEEE Transactions on Information Forensics and Security.

[171]  Chuan Zhang,et al.  Quaternion polar harmonic Fourier moments for color images , 2018, Inf. Sci..

[172]  Erbo Li,et al.  Isomorphism between Differential and Moment Invariants under Affine Transform , 2017, ArXiv.

[173]  Manhua Liu,et al.  Invariant representation of orientation fields for fingerprint indexing , 2012, Pattern Recognit..

[174]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[175]  Nicolas Le Bihan,et al.  Fast Complexified Quaternion Fourier Transform , 2006, IEEE Transactions on Signal Processing.

[176]  Dinggang Shen,et al.  Generalized Affine Invariant Image Normalization , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[177]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[178]  Jing Chen,et al.  Chemical image moments and their applications , 2018, TrAC Trends in Analytical Chemistry.

[179]  Georgios S. Paschos,et al.  Image Content-Based Retrieval Using Chromaticity Moments , 2003, IEEE Trans. Knowl. Data Eng..

[180]  John K. Pollard,et al.  Accurate geometric correction of ATSR images , 1997, IEEE Trans. Geosci. Remote. Sens..

[181]  Qingtang Su,et al.  Fractional Quaternion Zernike Moments for Robust Color Image Copy-Move Forgery Detection , 2018, IEEE Access.

[182]  Xingyuan Wang,et al.  Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution , 2017, Signal Process..

[183]  Bin Xiao,et al.  Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking , 2020, Inf. Sci..

[184]  Yicong Zhou,et al.  Low-Rank Quaternion Approximation for Color Image Processing , 2020, IEEE Transactions on Image Processing.

[185]  Raveendran Paramesran,et al.  Image Analysis Using Hahn Moments , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[186]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[187]  Dimitris E. Koulouriotis,et al.  Generalized dual Hahn moment invariants , 2013, Pattern Recognit..

[188]  Roland T. Chin,et al.  On image analysis by the methods of moments , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[189]  Atilla Baskurt,et al.  Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[190]  Cecilia Di Ruberto,et al.  Fast and accurate computation of orthogonal moments for texture analysis , 2018, Pattern Recognit..

[191]  Salvatore Tabbone,et al.  Errata and comments on "Generic orthogonal moments: Jacobi-Fourier moments for invariant image description" , 2013, Pattern Recognit..

[192]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[193]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[194]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[195]  Chandan Singh,et al.  Accurate Computation of Orthogonal Fourier-Mellin Moments , 2012, Journal of Mathematical Imaging and Vision.

[196]  José Luis Silván-Cárdenas,et al.  Local Geometric Deformations in the DHT Domain With Applications , 2019, IEEE Transactions on Image Processing.

[197]  J. Flusser,et al.  2D and 3D Image Analysis by Moments , 2016 .

[198]  Guoyin Wang,et al.  Lossless image compression based on integer Discrete Tchebichef Transform , 2016, Neurocomputing.

[199]  Daisuke Kihara,et al.  Three-dimensional Krawtchouk descriptors for protein local surface shape comparison , 2018, Pattern Recognit..

[200]  Jan Flusser,et al.  Graph method for generating affine moment invariants , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[201]  Ziliang Ping,et al.  Image description with Chebyshev-Fourier moments. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[202]  Jan Flusser,et al.  Recognition of Images Degraded by Linear Motion Blur without Restoration , 1994, Theoretical Foundations of Computer Vision.

[203]  Salvatore Tabbone,et al.  Fast computation of orthogonal polar harmonic transforms , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[204]  Yiannis S. Boutalis,et al.  Modified Factorial-Free Direct Methods for Zernike and Pseudo-Zernike Moment Computation , 2009, IEEE Transactions on Instrumentation and Measurement.

[205]  Alexander G. Mamistvalov n-Dimensional Moment Invariants and Conceptual Mathematical Theory of Recognition n-Dimensional Solids , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[206]  Chao Xu,et al.  DCT Inspired Feature Transform for Image Retrieval and Reconstruction. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[207]  Jan Flusser,et al.  Affine Invariants of Vector Fields , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[208]  Guoyin Wang,et al.  Image analysis by fractional-order orthogonal moments , 2017, Inf. Sci..

[209]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..

[210]  Dimitris E. Koulouriotis,et al.  Image watermarking via separable moments , 2013, Multimedia Tools and Applications.

[211]  Hong Chen,et al.  Atomic Representation-Based Classification: Theory, Algorithm, and Applications , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[212]  Huazhong Shu,et al.  Image analysis by discrete orthogonal dual Hahn moments , 2007, Pattern Recognit. Lett..

[213]  Khalid M. Hosny,et al.  Image representation using accurate orthogonal Gegenbauer moments , 2011, Pattern Recognit. Lett..

[214]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[215]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[216]  Lina Yao,et al.  Quaternion Knowledge Graph Embeddings , 2019, NeurIPS.

[217]  Khalid M. Hosny,et al.  Novel Multi-Channel Fractional-Order Radial Harmonic Fourier Moments for Color Image Analysis , 2020, IEEE Access.

[218]  Parminder Kaur,et al.  Comprehensive Study of Continuous Orthogonal Moments—A Systematic Review , 2019, ACM Comput. Surv..

[219]  Hongqing Zhu,et al.  Image representation using separable two-dimensional continuous and discrete orthogonal moments , 2012, Pattern Recognit..

[220]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[221]  Raveendran Paramesran,et al.  On the computational aspects of Zernike moments , 2007, Image Vis. Comput..

[222]  Hassan Qjidaa,et al.  Fast 3D image reconstruction by cuboids and 3D Charlier’s moments , 2019, Journal of Real-Time Image Processing.

[223]  Miroslaw Pawlak,et al.  Image analysis by moments : reconstruction and computational aspects , 2006 .

[224]  Saeid Belkasim,et al.  Explicit invariance of Cartesian Zernike moments , 2007, Pattern Recognit. Lett..

[225]  Hervé Jégou,et al.  A Comparison of Dense Region Detectors for Image Search and Fine-Grained Classification , 2014, IEEE Transactions on Image Processing.

[226]  Yan Yang,et al.  Image analysis by generalized Chebyshev-Fourier and generalized pseudo-Jacobi-Fourier moments , 2016, Pattern Recognit..

[227]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[228]  Rachid Benouini,et al.  3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials , 2017, Pattern Recognit..

[229]  Bin Xiao,et al.  Generic radial orthogonal moment invariants for invariant image recognition , 2013, J. Vis. Commun. Image Represent..

[230]  Jan Flusser,et al.  Scale invariants from Gaussian-Hermite moments , 2017, Signal Process..

[231]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[232]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[233]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[234]  Paul Suetens,et al.  Fundamentals of medical imaging, 3rd edition , 2017 .

[235]  Nikolaos Canterakis,et al.  3D Zernike Moments and Zernike Affine Invariants for 3D Image Analysis and Recognition , 1999 .

[236]  Xingyuan Wang,et al.  Geometrically invariant image watermarking based on fast Radial Harmonic Fourier Moments , 2016, Signal Process. Image Commun..

[237]  Qi Tian,et al.  SIFT Meets CNN: A Decade Survey of Instance Retrieval , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[238]  M. Uhrin Through the eyes of a descriptor: Constructing complete, invertible descriptions of atomic environments , 2021, Physical Review B.

[239]  Hong-Ying Yang,et al.  Image analysis by log-polar Exponent-Fourier moments , 2020, Pattern Recognit..

[240]  Hassan Qjidaa,et al.  Fractional Charlier moments for image reconstruction and image watermarking , 2020, Signal Process..

[241]  M. Teague Image analysis via the general theory of moments , 1980 .

[242]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[243]  Salvatore Tabbone,et al.  Fast Generic Polar Harmonic Transforms , 2014, IEEE Transactions on Image Processing.

[244]  Dong Xu,et al.  Shape DNA: Basic Generating Functions for Geometric Moment Invariants , 2017, ArXiv.

[245]  Erbo Li,et al.  Reflection Invariant and Symmetry Detection , 2017, ArXiv.

[246]  Hassan Qjidaa,et al.  Novel Octonion Moments for color stereo image analysis , 2021, Digit. Signal Process..

[247]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[248]  Xudong Jiang,et al.  Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[249]  Bing He,et al.  Image analysis using modified exponent-Fourier moments , 2019, EURASIP J. Image Video Process..

[250]  Zhongke Shi,et al.  Rotation invariants from Gaussian-Hermite moments of color images , 2018, Signal Process..

[251]  Jiwen Lu,et al.  Learning Rotation-Invariant Local Binary Descriptor , 2017, IEEE Transactions on Image Processing.

[252]  Erik Reinhard,et al.  Fundamentals of computer graphics , 2018 .

[253]  Erbo Li,et al.  Image Projective Invariants , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[254]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[255]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[256]  Hassan Qjidaa,et al.  Fast and accurate computation of Racah moment invariants for image classification , 2019, Pattern Recognit..