The role of electronic properties to the mutagenic activity of 1,6- and 3,6-dinitrobenzo[a]pyrene isomers.

Equilibrium geometries, infrared spectra, vertical first ionization potential (IP), electronic affinity (EA), dipole moment (mu) and electronic dipole polarizability (alpha) of 1,6- and 3,6-dinitrobenzo[a]pyrene isomers (1,6-DNBaP and 3,6-DNBaP) were evaluated by means of Density Functional Theory (DFT) and recent semiempirical PM6 method. Structural, energetic and vibrational properties of DNBaP isomers are substantially similar to each other. Calculated IP, EA and alpha values of these isomers are practically identical, while mu of 3,6-DNBaP (8.2 D at DFT level) is predicted to be ca. 4 times the value of 1,6-DNBaP isomer (1.9 D at DFT level), owing to favorable mutual orientation of the individual nitro group vectors. Higher direct-mutagenic activities of 3,6-DNBaP with respect to 1,6-DNBaP isomer by 1-2 orders of magnitude might be determined by its peculiar electronic charge distribution, which through stronger electrostatic and inductive interactions, can promote much more effectively binding to active-site of enzymes involved in mutagenic pathways. On the other hand, orientation of the nitro substituents relatively to the plane of the aromatic moiety, molecular sizes, as well as nitroreduction and oxidation reactions seem not to have a key role in the determination of the different mutagenic behaviour of these isomers.

[1]  C. Desfrançois,et al.  Electron binding to valence and multipole states of molecules: Nitrobenzene, para- and meta-dinitrobenzenes , 1999 .

[2]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[3]  Y. Nakanishi,et al.  Mutagenic and carcinogenic significance and the possible induction of lung cancer by nitro aromatic hydrocarbons in particulate pollutants. , 1994, Environmental health perspectives.

[4]  R. Parales,et al.  Laboratory evolution of catabolic enzymes and pathways. , 2005, Current opinion in biotechnology.

[5]  Giuseppe Zerbi,et al.  Vibrational intensities in infrared and Raman spectroscopy , 1982 .

[6]  Prabir K. Dutta,et al.  DENSITY FUNCTIONAL THEORETICAL STUDY OF NITRATED POLYCYCLIC AROMATIC HYDROCARBONS , 2004 .

[7]  L. Gundel,et al.  Polar organic matter in airborne particles: chemical characterization and mutagenic activity , 1993 .

[8]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[9]  Hitomi Suzuki,et al.  3-Nitrobenzanthrone, a Powerful Bacterial Mutagen and Suspected Human Carcinogen Found in Diesel Exhaust and Airborne Particulates , 1997 .

[10]  L. Türker,et al.  Ab initio and DFT study on 1,4-dinitroglycoluril configurational isomers: cis-DINGU and trans-DINGU. , 2006, Journal of hazardous materials.

[11]  P. Chattaraj,et al.  Popular Electronic Structure Principles in a Dynamical Context , 1996 .

[12]  L. Pedersen,et al.  The polarizability of planar aromatic systems. An application to polychlorinated biphenyls (PCB's), dioxins and polyaromatic hydrocarbons , 1983 .

[13]  R. Pearson THE PRINCIPLE OF MAXIMUM HARDNESS , 1993 .

[14]  A. Alparone,et al.  Electronic polarizability as a predictor of biodegradation rates of dimethylnaphthalenes. an ab initio and density functional theory study. , 2007, Environmental science & technology.

[15]  D. Pitea,et al.  Molecular Polarizability as a Tool for Understanding the Binding Properties of Polychlorinated Dibenzo-p-dioxins: Definition of a Reliable Computational Procedure. , 1996 .

[16]  J. T. Davies,et al.  Dielectric Behaviour and Structure , 1956 .

[17]  Guntram Rauhut,et al.  Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields , 1995 .

[18]  A. Alparone,et al.  STRUCTURE, VIBRATIONAL PROPERTIES AND POLARIZABILITIES OF METHYLNAPHTHALENE ISOMERS. A QUANTUM-MECHANICAL APPROACH , 2007 .

[19]  Hitomi Suzuki,et al.  Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. , 2006, Mutagenesis.

[20]  N. Miyata,et al.  Mutagenicity of nitro-azabenzo[a]pyrene and its related compounds. , 1992, Mutation research.

[21]  P. Pulay,et al.  Combination of Theoretical ab Initio and Experimental Information To Obtain Reliable Harmonic Force Constants. Scaled Quantum Mechanical (SQM) Force Fields for Glyoxal, Acrolein, Butadiene, Formaldehyde, and Ethylene. , 1984 .

[22]  I. Tetko,et al.  Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. , 2004, Journal of pharmaceutical sciences.

[23]  J. McKinney,et al.  Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site. , 1989, Environmental health perspectives.

[24]  H. Eklund,et al.  Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. , 2005, Journal of molecular biology.

[25]  J C Spain,et al.  Biodegradation of nitroaromatic compounds. , 2013, Annual review of microbiology.

[26]  D. Theodorou,et al.  Molecular simulation of static hyper-Rayleigh scattering: A calculation of the depolarization ratio and the local fields for liquid nitrobenzene , 1999 .

[27]  Kenneth D. Singer,et al.  MEASUREMENTS OF MOLECULAR SECOND ORDER OPTICAL SUSCEPTIBILITIES USING DC INDUCED SECOND HARMONIC GENERATION , 1981 .

[28]  N. Miyata,et al.  Detection of nitro-azabenzo[a]pyrene derivatives in the semivolatile phase originating from airborne particulate matter, diesel and gasoline vehicles. , 1994, Mutagenesis.

[29]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[30]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[31]  J. Lewtas,et al.  Detection of hydroxylated nitro aromatic and hydroxylated nitro polycyclic aromatic compounds in an ambient air particulate extract using bioassay-directed fractionation. , 1988, Environmental science & technology.

[32]  Alan R. Katritzky,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies , 1996 .

[33]  A. Debnath,et al.  Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. , 1991, Journal of medicinal chemistry.

[34]  R. Kacker,et al.  Uncertainties in scaling factors for ab initio vibrational frequencies. , 2005, The journal of physical chemistry. A.

[35]  J. Church,et al.  The conformation of some nitro-polycyclic aromatic hydrocarbons , 2000 .

[36]  J. Pitts,et al.  Mutagens in diesel exhaust particulate. Identification and direct activities of 6-nitrobenzo[a]pyrene, 9-nitroanthracene, 1-nitropyrene and 5h-phenanthro[4,5-bcd]pyran-5-one. , 1982, Mutation research.

[37]  A. Shusterman,et al.  The role of hydrophobicity in the Ames test. The correlation of the mutagenicity of nitropolycyclic hydrocarbons with partition coefficients and molecular orbital indices , 1988 .

[38]  X. Ju,et al.  QSARs for the toxicity of polychlorinated dibenzofurans through DFT-calculated descriptors of polarizabilities, hyperpolarizabilities and hyper-order electric moments. , 2007, Chemosphere.

[39]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[40]  K. Aika,et al.  Mutagenic nitrated benzo[a]pyrene derivatives in the reaction product of benzo[a]pyrene in NO2-air in the presence of O3 or under photoirradiation. , 2000, Chemosphere.

[41]  W. Choi,et al.  Understanding the congener-specific toxicity in polychlorinated dibenzo-p-dioxins: chlorination pattern and molecular quadrupole moment. , 2002, Journal of the American Chemical Society.

[42]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[43]  Errol Lewars,et al.  Computational chemistry , 2003 .

[44]  T. Heinis,et al.  Electron affinities of naphthalene, anthracene and substituted naphthalenes and anthracenes , 1993 .

[45]  A. Alparone,et al.  Prediction of mutagenic activity of nitronaphthalene isomers by infrared and Raman spectroscopy. , 2008, Journal of hazardous materials.

[46]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[47]  H. Rosenkranz,et al.  Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. , 1986, Critical reviews in toxicology.

[48]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[49]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[50]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[51]  A. Basu,et al.  Mutagenicity of nitroaromatic compounds. , 2000, Chemical research in toxicology.

[52]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[53]  A. Alparone,et al.  Electronic properties of some nitrobenzo[a]pyrene isomers: a possible relationship to mutagenic activity , 2008, Journal of molecular modeling.

[54]  N. Sera,et al.  Comparative tumorigenicity of 1- and 3-nitrobenzo[a]pyrenes, and 3,6- and 1,6-dinitrobenzo[a]pyrenes in F344/DuCrj rats. , 1998, Toxicology letters.

[55]  Andrew T. Brown,et al.  Electron Affinities of Polycyclic Aromatic Hydrocarbons , 2001 .

[56]  Roy E. Bruns,et al.  Atomic Mean Dipole Moment Derivatives and GAPT Charges , 2000 .

[57]  D. Fitz,et al.  Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. , 1978, Science.

[58]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[59]  T. Imasaka,et al.  Chlorine substitution pattern, molecular electronic properties, and the nature of the ligand-receptor interaction: quantitative property-activity relationships of polychlorinated dibenzofurans. , 2005, Chemical research in toxicology.

[60]  P. Kebarle,et al.  Electron Affinities of Some Polycyclic Aromatic Hydrocarbons, Obtained from Electron‐Transfer Equilibria , 1993 .

[61]  S. Böhm,et al.  Dipole moments and electron distribution of conjugated molecules; para derivatives of benzene , 2007 .

[62]  B. Dellinger,et al.  Electronic elasticity-toxicity relationships for polychlorinated dibenzo-p-dioxin congeners. , 2002, Chemosphere.

[63]  S. Scrimgeour,et al.  3,4‐Benzopyrene (a new refinement) , 1976 .

[64]  P. Fu Metabolism of nitro-polycyclic aromatic hydrocarbons. , 1990, Drug metabolism reviews.