Singular perturbations of positivity preserving semigroups via path space techniques

Associated with each standard positivity preserving semigroup is a generalized path space. The Feynman-Kac-Nelson formula on path space combined with hypercontractivity of the semigroup allows the control of highly singular perturbations. Applications are given to the Schrodinger equation and quantum field models, including a generalized space cutoff P(φ)2 interaction, P(φ(0))2, and a finite volume (ψ2φ)2 interaction.

[1]  Irving Segal,et al.  Notes towards the construction of nonlinear relativistic quantum fields. III: Properties of the $C^*$-dynamics for a certain class of interactions , 1969 .

[2]  Edward Nelson Feynman Integrals and the Schrödinger Equation , 1964 .

[3]  James Glimm,et al.  The λ(ϕ 4 ) 2 Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum , 1970 .

[4]  I. Segal Tensor algebras over Hilbert spaces. I , 1956 .

[5]  I. Segal Construction of non-linear local quantum processes. II , 1971 .

[6]  Edward Nelson,et al.  Construction of quantum fields from Markoff fields. , 1973 .

[7]  Ergodic semigroups of positivity preserving self-adjoint operators , 1973 .

[8]  A. Klein An explicitly solvable model in “Euclidean” field theory: The Fixed Source , 1974 .

[9]  K. Symanzik Euclidean Quantum field theory , 1969 .

[10]  L. Rosen A λφ2n field theory without cutoffs , 1970 .

[11]  I. Segal,et al.  Integrals and operators , 1968 .

[12]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[13]  B. Simon Essential self-adjointness of Schrödinger operators with positive potentials , 1973 .

[14]  Tosis Kato,et al.  Schrödinger operators with singular potentials , 1972 .

[15]  J. Glimm Boson fields with nonlinear selfinteraction in two dimensions , 1968 .

[16]  B. Simon,et al.  Hypercontractive semigroups and two dimensional self-coupled Bose fields , 1972 .

[17]  Barry Simon,et al.  The P(φ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics , 1975 .

[18]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[19]  Quadratic expressions in a free boson field , 1973 .

[20]  L. Gross Existence and uniqueness of physical ground states , 1972 .

[21]  B. Simon Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields , 1973 .

[22]  Edward Nelson The free Markoff field , 1973 .

[23]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[24]  James Glimm,et al.  The λ(φ4)2 quantum field theory without cutoffsquantum field theory without cutoffs , 1970 .

[25]  I. Segal,et al.  Nonlinear functions of weak processes. I , 1969 .

[26]  I. Segal Construction of Non-Linear Local Quantum Processes: I , 1970 .

[27]  James Glimm,et al.  A LAMBDA PHI**4 QUANTUM FIELD THEORY WITHOUT CUTOFFS. 1 , 1968 .

[28]  F. Guerra,et al.  The vacuum energy forP(ø)2: Infinite volume limit and coupling constant dependence , 1973 .

[29]  William G. Faris Invariant cones and uniqueness of the ground state for fermion systems , 1972 .