Non-unimodular transversely homogeneous foliations

We give sufficient conditions for the tautness of a transversely homogenous foliation defined on a compact manifold, by computing its base-like cohomology. As an application, we prove that if the foliation is non-unimodular then either the ambient manifold, the closure of the leaves or the total space of an associated principal bundle fiber over $S^1$.

[1]  Robert Hermann,et al.  A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle , 1960 .

[2]  G. Cairns,et al.  Riemannian Foliations , 1988 .

[3]  R. Wolak,et al.  Cohomological tautness for Riemannian foliations , 2008, 0805.4714.

[4]  A. Alaoui,et al.  On the topological invariance of the basic cohomology , 1993 .

[5]  A. Alaoui,et al.  On deformations of transversely homogeneous foliations , 2001 .

[6]  W. Greub,et al.  Connections, curvature and cohomology , 1976 .

[7]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[8]  E. Macías-Virgós Homotopy groups in Lie foliations , 1994 .

[9]  E. Macías-Virgós,et al.  Non-unimodular Lie foliations , 2005 .

[10]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[11]  B. Reinhart HARMONIC INTEGRALS ON FOLIATED MANIFOLDS. , 1959 .

[12]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[13]  M. Hazewinkel A DUALITY THEOREM FOR THE COHOMOLOGY OF LIE ALGEBRAS , 1970 .

[14]  Xosé M. Masa Duality and minimality in Reimannian foliations , 1992 .

[15]  J. Eschenburg Comparison Theorems in Riemannian Geometry , 1994 .

[16]  D. Tischler On fibering certain foliated manifolds overS1 , 1970 .

[17]  A. W. Knapp Lie Groups, Lie Algebras, and Cohomology. , 1988 .

[18]  Aziz El Kacimi-Alaoui,et al.  Structures géométriques invariantes et feuilletages de Lie , 1990 .

[19]  W. Scott,et al.  Group Theory. , 1964 .

[20]  R. Carter Lie Groups , 1970, Nature.

[21]  R. Blumenthal Transversely homogeneous foliations , 1979 .

[22]  J. '. L'opez,et al.  Secondary characteristic classes of transversely homogeneous foliations , 2012, 1205.3375.