Biotechnological potential of aquatic plant-microbe interactions.

[1]  T. Vamerali,et al.  Field crops for phytoremediation of metal-contaminated land. A review , 2010 .

[2]  Minhee Lee,et al.  Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. , 2010, Journal of hazardous materials.

[3]  N. Khellaf,et al.  Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. , 2009, Bioresource technology.

[4]  M. Iqbal,et al.  Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms , 2009, The Botanical Review.

[5]  G. Berta,et al.  Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms , 2009, Proteomics.

[6]  P. Srivastava,et al.  Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. , 2009, Journal of hazardous materials.

[7]  V. Sheoran,et al.  Phytomining: A review , 2009 .

[8]  M. Huesemann,et al.  In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). , 2009 .

[9]  K. Adebowale,et al.  Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. , 2009, Bioresource technology.

[10]  M. Couderchet,et al.  Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. , 2009, Ecotoxicology and environmental safety.

[11]  P. Rai Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes , 2009 .

[12]  H. Küpper,et al.  Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA] , 2009, Plant Physiology.

[13]  K. Sei,et al.  Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. , 2009, Journal of bioscience and bioengineering.

[14]  P. Hinsinger,et al.  Rhizosphere pH gradient controls copper availability in a strongly acidic soil. , 2009, Environmental science & technology.

[15]  N. Ae,et al.  Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. , 2009, Environmental science & technology.

[16]  B. D. Tripathi,et al.  Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). , 2009, Journal of hazardous materials.

[17]  F. Taner,et al.  Effect of pH, Temperature, and Lead Concentration on the Bioremoval of Lead from Water Using Lemna Minor , 2009, International journal of phytoremediation.

[18]  C. Katsaros,et al.  The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. , 2009, Bioresource technology.

[19]  R. Briandet,et al.  Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli , 2009, Applied and Environmental Microbiology.

[20]  S. Hasnain,et al.  Chromate resistantBacillus cereus augments sunflower growth by reducing toxicity of Cr (VI) , 2005, Journal of Plant Biology.

[21]  B. D. Tripathi,et al.  Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India , 2009, Environmental monitoring and assessment.

[22]  F. Ghassemzadeh,et al.  Removing Arsenic and Antimony by Phragmites australis: Rhizofiltration Technology , 2008 .

[23]  H. Freitas,et al.  Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. , 2008, Bioresource technology.

[24]  O. Monroy,et al.  Assessment of the Hyperaccumulating Lead Capacity of Salvinia minima Using Bioadsorption and Intracellular Accumulation Factors , 2008 .

[25]  H. Sano,et al.  Cadmium-tolerance of transgenic Ipomoea aquatica expressing serine acetyltransferase and cysteine synthase , 2008 .

[26]  Raina M Maier,et al.  Plant growth-promoting bacteria for phytostabilization of mine tailings. , 2008, Environmental science & technology.

[27]  W. Achouak,et al.  Heavy Metal Tolerance in Stenotrophomonas maltophilia , 2008, PloS one.

[28]  Oscar N. Ruiz,et al.  Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. , 2007, Environmental science & technology.

[29]  T. Maki,et al.  Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. , 2007, Chemosphere.

[30]  E. Grill,et al.  Function of phytochelatin synthase in catabolism of glutathione-conjugates. , 2007, The Plant journal : for cell and molecular biology.

[31]  Qunhui Wang,et al.  Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). , 2007, Plant physiology and biochemistry : PPB.

[32]  B. Clothier,et al.  Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand , 2006 .

[33]  B. Mattiasson,et al.  Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. , 2006, Chemosphere.

[34]  K. Sei,et al.  Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere. , 2006, Journal of bioscience and bioengineering.

[35]  M. Greger,et al.  Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. , 2006, Chemosphere.

[36]  R. Moreno-Sánchez,et al.  Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. , 2006, Journal of theoretical biology.

[37]  Wilfred Chen,et al.  Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals , 2006, Applied and Environmental Microbiology.

[38]  T. Barkay,et al.  New Findings on Evolution of Metal Homeostasis Genes: Evidence from Comparative Genome Analysis of Bacteria and Archaea , 2005, Applied and Environmental Microbiology.

[39]  L. Cavalca,et al.  Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. , 2005, FEMS microbiology ecology.

[40]  U. Krämer,et al.  Phytoremediation: novel approaches to cleaning up polluted soils. , 2005, Current opinion in biotechnology.

[41]  K. Wood Analytical biotechnology: Imaging: beyond cataloging nucleic acids and proteins , 2005 .

[42]  S. Pereira,et al.  Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. , 2005, Canadian journal of microbiology.

[43]  R. Goel,et al.  Isolation and Functional Characterization of Siderophore-Producing Lead- and Cadmium-Resistant Pseudomonas putida KNP9 , 2005, Current Microbiology.

[44]  Carlos A. Jerez,et al.  Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans , 2004, Applied and Environmental Microbiology.

[45]  M. Prasad,et al.  Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology , 2003 .

[46]  O. Dhankher,et al.  Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. , 2003, The New phytologist.

[47]  R. Meagher,et al.  Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. , 2003, Plant biotechnology journal.

[48]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[49]  R. Chaney,et al.  Phenotypic characterization of microbes in the rhizosphere of alyssum murale , 2003, International journal of phytoremediation.

[50]  M. Prasad,et al.  Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation , 2001 .

[51]  K. Dietz,et al.  Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. , 2001, Canadian journal of microbiology.

[52]  S. Matsumoto,et al.  Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil , 2001 .

[53]  K. Zierold,et al.  Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies – Hebeloma crustuliniforme ectomycorrhizas , 2000 .

[54]  D. Dixon,et al.  Plant growth-promoting bacteria that decrease heavy metal toxicity in plants , 2000 .

[55]  G. Bañuelos,et al.  Phytoremediation of Contaminated Soil and Water , 1999 .

[56]  N. Terry,et al.  Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants , 1999, Planta.

[57]  A. Zayed,et al.  PHYTOACCUMULATION OF TRACE ELEMENTS BY WETLAND PLANTS: II. WATER HYACINTH , 1999 .

[58]  I. Raskin,et al.  A Possible Role for Rhizobacteria in Water Treatment by Plant Roots , 1999 .

[59]  R. Webb,et al.  EFFECTS OF DIVALENT METAL CATIONS AND RESISTANCE MECHANISMS OF THE CYANOBACTERIUM SYNECHOCOCCUS SP. STRAIN PCC 7942 , 1999 .

[60]  Paul E. Flathman,et al.  PHYTOREMEDIATION: CURRENT VIEWS ON AN EMERGING GREEN TECHNOLOGY , 1998 .

[61]  A. Zayed,et al.  Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed , 1998 .

[62]  Ilya Raskin,et al.  Enhanced Accumulation of Pb in Indian Mustard by Soil-Applied Chelating Agents , 1997 .

[63]  K. Sand‐Jensen,et al.  Microsensor Analysis of Oxygen in the Rhizosphere of the Aquatic Macrophyte Littorella uniflora (L.) Ascherson , 1994, Plant physiology.

[64]  N. Robinson,et al.  Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions , 1993, Molecular microbiology.

[65]  G. Gadd Metals and microorganisms: a problem of definition. , 1992, FEMS microbiology letters.