Enhance the sensitivity of strain-gauge-based force sensors using moving morphable units method

[1]  T. Ono,et al.  High-Gauge Factor Strain Sensor Based on Piezoelectric Aluminum Nitride Coupled to MOSFET , 2019, IEEE Sensors Journal.

[2]  Md Maksudul Hossain,et al.  Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. , 2019, ACS applied materials & interfaces.

[3]  Changyu Shen,et al.  Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. , 2019, ACS applied materials & interfaces.

[4]  Xiang Li,et al.  Structure design of six-component strain-gauge-based transducer for minimum cross-interference via hybrid optimization methods , 2019, Structural and Multidisciplinary Optimization.

[5]  C. McNeill,et al.  Highly Exfoliated MWNT-rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. , 2018, ACS applied materials & interfaces.

[6]  Jian Zhang,et al.  A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model , 2016 .

[7]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[8]  Pooi See Lee,et al.  Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors , 2014, Advanced materials.

[9]  Jung-Hoon Kim,et al.  Shape optimization of a mechanically decoupled six-axis force/torque sensor , 2014 .

[10]  T. Shi,et al.  Optimization of stresses in a local region for the maximization of sensitivity and minimization of cross—sensitivity of piezoresistive sensors , 2013 .

[11]  Mitsuru Kitamura,et al.  Topology optimization for designing strain-gauge load cells , 2010 .

[12]  Matthew J. McHenry,et al.  The biomechanics of sensory organs , 2009 .

[13]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[14]  Carlo Menon,et al.  Biomimetics of campaniform sensilla: Measuring strain from the deformation of holes , 2007 .

[15]  Shih-Ming Yang,et al.  Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor , 2007 .

[16]  Shinji Nishiwaki,et al.  Piezoresistive sensor design using topology optimization , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  Amit K. Gupta,et al.  On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications , 2000 .

[18]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[19]  Jianhua Zhou,et al.  Structural Topology Optimization Through Explicit Boundary Evolution , 2017 .

[20]  Qi Xia,et al.  Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors , 2013 .

[21]  Long Chen FINITE ELEMENT METHOD , 2013 .

[22]  Xuan Zhang,et al.  High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding , 2003 .

[23]  A.-R. A. Khaleda,et al.  Analysis , control and augmentation of microcantilever deflections in bio-sensing systems , 2003 .