FUNCTION AND DISSIPATION IN FINITE STATE AUTOMATA - FROM COMPUTING TO INTELLIGENCE AND BACK

FUNCTION AND DISSIPATION IN FINITE STATE AUTOMATA FROM COMPUTING TO INTELLIGENCE AND BACK

[1]  W. Porod,et al.  Energy Limits in Computation A Review of Landauer’s Principle, Theory and Experiments , 2019 .

[2]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[3]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[4]  Nicholas Pippenger Reliable Computation in the Presence of Noise , 1986 .

[5]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  N. G. Anderson,et al.  Toward Nanoprocessor Thermodynamics , 2012, IEEE Transactions on Nanotechnology.

[7]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[8]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[9]  Saurabh K. Bose,et al.  Stable Self-Assembled Atomic-Switch Networks for Neuromorphic Applications , 2017, IEEE Transactions on Electron Devices.

[10]  Neal G. Anderson Irreversible information loss: Fundamental notions and entropy costs , 2014 .

[11]  Robert Marsland,et al.  Statistical Physics of Adaptation , 2014, 1412.1875.

[12]  John Langford,et al.  Efficient Exploration in Reinforcement Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[13]  Peng Lin,et al.  Fully memristive neural networks for pattern classification with unsupervised learning , 2018 .

[14]  Neal G. Anderson,et al.  Heat Dissipation in Nanocomputing: Lower Bounds From Physical Information Theory , 2013, IEEE Transactions on Nanotechnology.

[15]  R. Keyes Physical limits of silicon transistors and circuits , 2005 .

[16]  Robert L. Fry,et al.  Physical Intelligence and Thermodynamic Computing , 2017, Entropy.

[17]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[18]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[19]  Nuttapong Chentanez,et al.  Intrinsically Motivated Reinforcement Learning , 2004, NIPS.

[20]  Schumacher,et al.  Limitation on the amount of accessible information in a quantum channel. , 1996, Physical review letters.

[21]  Suriyanarayanan Vaikuntanathan,et al.  Design principles for nonequilibrium self-assembly , 2015, Proceedings of the National Academy of Sciences.

[22]  Natesh Ganesh,et al.  Dissipation in neuromorphic computing: Fundamental bounds for feedforward networks , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[23]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[24]  Susanne Still Thermodynamic cost and benefit of data representations , 2017 .

[25]  Erik DeBenedictis,et al.  A path toward ultra-low-energy computing , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[26]  Sandy Lovie How the mind works , 1980, Nature.

[27]  Eörs Szathmáry,et al.  How Can Evolution Learn? , 2016, Trends in ecology & evolution.

[28]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[29]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[30]  Kaushik Roy,et al.  Exploring Spin Transfer Torque Devices for Unconventional Computing , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[31]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[32]  Karl J. Friston,et al.  A Free Energy Principle for Biological Systems. , 2012, Entropy.

[33]  Natesh Ganesh,et al.  Thermodynamic Intelligence, a Heretical Theory , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[34]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[35]  John C. Baez,et al.  Relative Entropy in Biological Systems , 2015, Entropy.

[36]  Neal G. Anderson,et al.  Information Erasure in Quantum Systems , 2008 .

[37]  Natesh Ganesh,et al.  A Thermodynamic Treatment of Intelligent Systems , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[38]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[39]  Subutai Ahmad,et al.  Properties of Sparse Distributed Representations and their Application to Hierarchical Temporal Memory , 2015, ArXiv.

[40]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[41]  Christof Teuscher,et al.  The Weird, the Small, and the Uncontrollable: Redefining the Frontiers of Computing , 2017, Computer.

[42]  Chris Arney Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World , 2014 .

[43]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[44]  Mark D. Hill,et al.  Amdahl's Law in the Multicore Era , 2008, Computer.

[45]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[46]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[47]  Tibor Nemetz INFORMATION THEORY AND COMMUNICATION , 2011 .

[48]  Guillem Collell,et al.  Brain activity and cognition: a connection from thermodynamics and information theory , 2015, Front. Psychol..

[49]  James Ladyman,et al.  What does it mean to say that a physical system implements a computation? , 2009, Theor. Comput. Sci..

[50]  Sterling Street Neurobiology as Information Physics , 2016, bioRxiv.

[51]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Neal G. Anderson,et al.  On the physical implementation of logical transformations: Generalized L-machines , 2010, Theor. Comput. Sci..

[54]  Adam Z. Stieg,et al.  Neuromorphic Atomic Switch Networks , 2012, PloS one.

[55]  Neal G. Anderson,et al.  Overwriting information: Correlations, physical costs, and environment models , 2012 .

[56]  Natesh Ganesh,et al.  Irreversibility and dissipation in finite-state automata , 2013 .

[57]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.

[59]  Jeremy L. England Dissipative adaptation in driven self-assembly. , 2015, Nature nanotechnology.

[60]  Susanne Still,et al.  Information-theoretic approach to interactive learning , 2007, 0709.1948.

[61]  James Ladyman,et al.  The connection between logical and thermodynamic irreversibility , 2007 .

[62]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[63]  Naftali Tishby,et al.  Document clustering using word clusters via the information bottleneck method , 2000, SIGIR '00.

[64]  H. Noji,et al.  A rotary molecular motor that can work at near 100% efficiency. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  Frederick C. Hennie,et al.  Finite-state Models for Logical Machines , 1968 .

[66]  Mihaela Ulieru,et al.  Emergent engineering: a radical paradigm shift , 2011, Int. J. Auton. Adapt. Commun. Syst..

[67]  Amos Storkey,et al.  Hopfield learning rule with high capacity storage of time-correlated patterns , 1997 .

[68]  Masakazu Aono,et al.  Atomic switch networks as complex adaptive systems , 2018 .

[69]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[70]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[71]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[72]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[73]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[74]  Naftali Tishby,et al.  Past-future information bottleneck in dynamical systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[76]  Philippe Matherat,et al.  Logical Dissipation of Automata Implements - Dissipation of Computation , 1998 .

[77]  Perry L. Miller,et al.  The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data , 1998, Trends in Neurosciences.

[78]  Jeremy L. England,et al.  Statistical physics of self-replication. , 2012, The Journal of chemical physics.

[79]  David Wentzlaff,et al.  The Accelerator Wall: Limits of Chip Specialization , 2019, 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[80]  A. Wehrl General properties of entropy , 1978 .

[81]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[82]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[83]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[84]  Neal G. Anderson,et al.  Conditioning, Correlation and Entropy Generation in Maxwell's Demon , 2013, Entropy.

[85]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[86]  M. Lowe Consciousness and Language , 2004 .

[87]  Yi Tao,et al.  The replicator equation and other game dynamics , 2014, Proceedings of the National Academy of Sciences.

[88]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[89]  Volker J. Sorger,et al.  Towards On-Chip Optical FFTs for Convolutional Neural Networks , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[90]  Susanne Still,et al.  Information Bottleneck Approach to Predictive Inference , 2014, Entropy.

[91]  Byoung-Tak Zhang,et al.  Information-Theoretic Objective Functions for Lifelong Learning , 2013, AAAI Spring Symposium: Lifelong Machine Learning.

[92]  Naftali Tishby,et al.  Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).

[93]  O. Cueto,et al.  Physical aspects of low power synapses based on phase change memory devices , 2012 .

[94]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[95]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[96]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[97]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[98]  W. Ashby,et al.  Every Good Regulator of a System Must Be a Model of That System , 1970 .

[99]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[100]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[101]  Marc Harper,et al.  The Replicator Equation as an Inference Dynamic , 2009, ArXiv.

[102]  Neal G. Anderson,et al.  Information as a physical quantity , 2017, Inf. Sci..

[103]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .