A Simple Nonlinear Observer for a Class of Uncertain Mechanical Systems

A simple nonlinear observer is proposed for a class of uncertain nonlinear multiple-input-multiple-output (MIMO) mechanical systems whose dynamics are first-order differentiable. The global asymptotic observation of the proposed observer is proved. Thus, the observer can be designed independently of the controller. Furthermore, the proposed observer is formulated without any detailed model knowledge of the system. These advantages make it easy to implement. Numerical simulations are included to illustrate the effectiveness of the proposed observer.

[1]  Henk Nijmeijer,et al.  A passivity approach to controller-observer design for robots , 1993, IEEE Trans. Robotics Autom..

[2]  F. Lamnabhi-Lagarrigue,et al.  Sliding observer-controller design for uncertain triangular nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Masayoshi Tomizuka,et al.  An adaptive output feedback controller for robot arms: stability and experiments , 1996, Autom..

[4]  Darren M. Dawson,et al.  A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems , 2004, Autom..

[5]  D. Dawson,et al.  On the state observation and output feedback problems for nonlinear uncertain dynamic systems , 1992 .

[6]  Leonardo Lanari,et al.  Global set point control via link position measurement for flexible joint robots , 1995 .

[7]  MingQing Xiao,et al.  The global existence of nonlinear observers with linear error dynamics: A topological point of view , 2006, Syst. Control. Lett..

[8]  Mohamed Djemai,et al.  Sliding Mode Observers , 2002 .

[9]  Hebertt Sira-Ramírez,et al.  Dynamic second-order sliding mode control of the hovercraft vessel , 2002, IEEE Trans. Control. Syst. Technol..

[10]  J. Alvarez,et al.  An Invariance Principle for Discontinuous Dynamic Systems With Application to a Coulomb Friction Oscillator , 2000 .

[11]  Giorgio Bartolini,et al.  A survey of applications of second-order sliding mode control to mechanical systems , 2003 .

[12]  Jian Chen,et al.  A continuous asymptotic tracking control strategy for uncertain nonlinear systems , 2004, IEEE Transactions on Automatic Control.

[13]  M.S. de Queiroz,et al.  On global output feedback tracking control of robot manipulators , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[14]  E. A. Misawa,et al.  A Study on Sliding Mode State Estimation , 1999 .

[15]  Alessandro Pisano,et al.  Output-feedback control of an underwater vehicle prototype by higher-order sliding modes , 2004, Autom..

[16]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[17]  D. Dawson,et al.  On the state observation and output feedback problems for nonlinear uncertain dynamic systems , 1992, Proceedings IEEE Southeastcon '92.

[18]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[19]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[20]  Carlos Canudas de Wit,et al.  Sliding Observers for Robot Manipulators , 1989 .

[21]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[22]  Peter C. Müller,et al.  A simple improved velocity estimation for low-speed regions based on position measurements only , 2006, IEEE Transactions on Control Systems Technology.

[23]  H. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997 .

[24]  Rafael Kelly,et al.  Robot control without velocity measurements: new theory and experimental results , 2004, IEEE Transactions on Robotics and Automation.

[25]  Yi Xiong,et al.  Sliding mode observer for nonlinear uncertain systems , 2001, IEEE Trans. Autom. Control..

[26]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[27]  C. Canudas-De-Wit,et al.  Almost globally stable nonlinear speed observer for a permanent magnet synchronous motor , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[28]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..