Quantifying the Effects of Enforcing Disentanglement on Variational Autoencoders

The notion of disentangled autoencoders was proposed as an extension to the variational autoencoder by introducing a disentanglement parameter $\beta$, controlling the learning pressure put on the possible underlying latent representations. For certain values of $\beta$ this kind of autoencoders is capable of encoding independent input generative factors in separate elements of the code, leading to a more interpretable and predictable model behaviour. In this paper we quantify the effects of the parameter $\beta$ on the model performance and disentanglement. After training multiple models with the same value of $\beta$, we establish the existence of consistent variance in one of the disentanglement measures, proposed in literature. The negative consequences of the disentanglement to the autoencoder's discriminative ability are also asserted while varying the amount of examples available during training.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[4]  Charles Blundell,et al.  Early Visual Concept Learning with Unsupervised Deep Learning , 2016, ArXiv.

[5]  Geoffrey E. Hinton,et al.  Transforming Auto-Encoders , 2011, ICANN.

[6]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[7]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[8]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[9]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[10]  Yoshua Bengio,et al.  Disentangling Factors of Variation via Generative Entangling , 2012, ArXiv.

[11]  Quan Pan,et al.  Disentangled Variational Auto-Encoder for Semi-supervised Learning , 2017, Inf. Sci..

[12]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[13]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[14]  Max Welling,et al.  Transformation Properties of Learned Visual Representations , 2014, ICLR.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[17]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[18]  Bruno A. Olshausen,et al.  Discovering Hidden Factors of Variation in Deep Networks , 2014, ICLR.

[19]  Yuting Zhang,et al.  Learning to Disentangle Factors of Variation with Manifold Interaction , 2014, ICML.

[20]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[21]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.