Automated aberration correction of arbitrary laser modes in high numerical aperture systems.

Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

[1]  S Bernet,et al.  Wavefront correction of spatial light modulators using an optical vortex image. , 2007, Optics express.

[2]  P. Ormos,et al.  Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. , 2007, Optics express.

[3]  G. Kim,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy , 2013 .

[4]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[5]  John W Sedat,et al.  Phase retrieval for high-numerical-aperture optical systems. , 2003, Optics letters.

[6]  Xu Liu,et al.  Resolution and contrast enhancements of optical microscope based on point spread function engineering , 2015 .

[7]  B. Chichkov,et al.  Multi-focus two-photon polymerization technique based on individually controlled phase modulation. , 2010, Optics express.

[8]  Denis Panneton,et al.  Exact vectorial model for nonparaxial focusing by arbitrary axisymmetric surfaces. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Georg von Freymann,et al.  Multi foci with diffraction limited resolution. , 2013, Optics express.

[10]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[11]  Peter R T Munro,et al.  Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region. , 2008, Optics express.

[12]  Alexander Jesacher,et al.  Full phase and amplitude control of holographic optical tweezers with high efficiency. , 2008, Optics express.

[13]  Yael Roichman,et al.  Optimized holographic optical traps. , 2005, Optics express.

[14]  F A Gianturco,et al.  Vibrational excitation of CF4 by electron impact: a computational analysis , 2005 .

[15]  Johannes Courtial,et al.  3D interferometric optical tweezers using a single spatial light modulator. , 2005, Optics express.

[16]  Georg von Freymann,et al.  Active aberration- and point-spread-function control in direct laser writing. , 2012, Optics express.

[17]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[18]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[19]  Robert A. Gonsalves,et al.  Phase Retrieval And Diversity In Adaptive Optics , 1982 .

[20]  B. J. Metcalf,et al.  Adaptive slit beam shaping for direct laser written waveguides. , 2012, Optics letters.

[21]  Svetlana N. Khonina,et al.  Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions , 2013 .

[22]  Jaroslaw Jacak,et al.  120 nm resolution and 55 nm structure size in STED-lithography. , 2013, Optics express.

[23]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[24]  David McGloin,et al.  Applications of spatial light modulators in atom optics. , 2003, Optics express.

[25]  Masahiko Takahashi,et al.  Nondipole effects in the angular distribution of photoelectrons from the C K shell of the CO molecule , 2006 .

[26]  S. Bernet,et al.  Near-perfect hologram reconstruction with a spatial light modulator. , 2008, Optics express.

[27]  Erik H. Waller,et al.  Three‐Dimensional μ‐Printing: An Enabling Technology , 2015 .

[28]  T Nielsen,et al.  High efficiency beam splitter for multifocal multiphoton microscopy , 2001, Journal of microscopy.

[29]  M. J. Padgett,et al.  Vortex knots in light , 2005 .

[30]  D. Grier A revolution in optical manipulation , 2003, Nature.

[31]  Peter John Rodrigo,et al.  Real-time three-dimensional optical micromanipulation of multiple particles and living cells. , 2004, Optics letters.

[32]  K. Kaji,et al.  High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope , 2015 .

[33]  S. Bernet,et al.  Optical tweezers of programmable shape with transverse scattering forces , 2008 .

[34]  Jeffrey A. Davis,et al.  Encoding amplitude information onto phase-only filters. , 1999, Applied optics.

[35]  V. Boyer,et al.  Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator , 2006 .

[36]  J R Fienup,et al.  Phase-retrieval algorithms for a complicated optical system. , 1993, Applied optics.

[37]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Dorband,et al.  Hubble Space Telescope Faint Object Camera calculated point-spread functions. , 1997, Applied optics.

[39]  Nathan J. Jenness,et al.  Three-dimensional parallel holographic micropatterning using a spatial light modulator. , 2008, Optics express.

[40]  Erik H. Waller,et al.  Optically reconfigurable magnetic materials , 2015, Nature Physics.

[41]  Buist,et al.  Real time two‐photon absorption microscopy using multi point excitation , 1998 .

[42]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[43]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[44]  Alexander Jesacher,et al.  Parallel direct laser writing in three dimensions with spatially dependent aberration correction. , 2010, Optics express.

[45]  Dirk Soltau,et al.  FULL-FIELD WAVEFRONT MEASUREMENTS WITH PHASE DIVERSITY , 1996 .