Lattice-Based Secure Biometric Authentication for Hamming Distance

[1]  Shweta Agrawal,et al.  Adaptive Simulation Security for Inner Product Functional Encryption , 2020, IACR Cryptol. ePrint Arch..

[2]  Junichi Tomida,et al.  Unbounded inner product functional encryption from bilinear maps , 2018, Japan Journal of Industrial and Applied Mathematics.

[3]  Sungwook Kim,et al.  A new approach to practical function-private inner product encryption , 2019, Theor. Comput. Sci..

[4]  David J. Wu,et al.  Function-Hiding Inner Product Encryption is Practical , 2018, IACR Cryptol. ePrint Arch..

[5]  Enrique Argones-Rúa,et al.  Efficient Verifiable Computation of XOR for Biometric Authentication , 2016, CANS.

[6]  Tatsuaki Okamoto,et al.  Efficient Functional Encryption for Inner-Product Values with Full-Hiding Security , 2016, ISC.

[7]  Damien Stehlé,et al.  Fully Secure Functional Encryption for Inner Products, from Standard Assumptions , 2016, CRYPTO.

[8]  Sourav Mukhopadhyay,et al.  Functional Encryption for Inner Product with Full Function Privacy , 2016, Public Key Cryptography.

[9]  Allison Bishop,et al.  Function-Hiding Inner Product Encryption , 2015, ASIACRYPT.

[10]  Martin R. Albrecht,et al.  On the concrete hardness of Learning with Errors , 2015, J. Math. Cryptol..

[11]  Angelo De Caro,et al.  Simple Functional Encryption Schemes for Inner Products , 2015, IACR Cryptol. ePrint Arch..

[12]  Cagatay Karabat,et al.  THRIVE: threshold homomorphic encryption based secure and privacy preserving biometric verification system , 2014, EURASIP Journal on Advances in Signal Processing.

[13]  Feng Li,et al.  Outsourceable two-party privacy-preserving biometric authentication , 2014, AsiaCCS.

[14]  Takeshi Koshiba,et al.  Practical Packing Method in Somewhat Homomorphic Encryption , 2013, DPM/SETOP.

[15]  Takeshi Koshiba,et al.  Packed Homomorphic Encryption Based on Ideal Lattices and Its Application to Biometrics , 2013, CD-ARES Workshops.

[16]  Damien Stehlé,et al.  Classical hardness of learning with errors , 2013, STOC '13.

[17]  Julien Bringer,et al.  SHADE: Secure HAmming DistancE Computation from Oblivious Transfer , 2013, Financial Cryptography Workshops.

[18]  Vinod Vaikuntanathan,et al.  Can homomorphic encryption be practical? , 2011, CCSW '11.

[19]  Vinod Vaikuntanathan,et al.  Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages , 2011, CRYPTO.

[20]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[21]  Benny Pinkas,et al.  Secure Hamming Distance Based Computation and Its Applications , 2009, ACNS.

[22]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..

[23]  Chris Roberts,et al.  Biometric attack vectors and defences , 2007, Comput. Secur..

[24]  Jonathan Katz,et al.  Threshold Cryptosystems Based on Factoring , 2002, ASIACRYPT.