Parameter Estimation for Multivariate Mixed Poisson Distributions

Estimating the parameters of multivariate distributions whose densities or masses cannot be expressed in tractable closed-form is a challenging problem. This paper concentrates on a family of such discrete distributions referred to as multivariate mixed Poisson distributions (MMPDs). These distributions are interesting for modeling correlations between adjacent pixels of active and astronomical images. Several estimators of MMPD parameters are investigated. These estimators include a composite likelihood estimator and a non-linear least squares estimator

[1]  Jean-Yves Tourneret,et al.  Multivariate mixed poisson distributions , 2004, 2004 12th European Signal Processing Conference.

[2]  Philippe Bernardoff,et al.  Which negative multinomial distributions are infinitely divisible , 2003 .

[3]  B. Friedlander,et al.  Performance analysis of parameter estimation algorithms based on high‐order moments , 1989 .

[4]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[5]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[6]  Philippe Réfrégier,et al.  Performance parameters for detection in low-flux coherent images. , 2003, Optics letters.

[7]  J.-Y. Tourneret,et al.  Composite likelihood estimation for multivariate mixed poisson distributions , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[8]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[9]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[10]  Remi Soummer,et al.  Influence of speckle and Poisson noise on exoplanet detection with a coronagraph , 2004, 2004 12th European Signal Processing Conference.

[11]  D. Karlis,et al.  Mixed Poisson Distributions , 2005 .

[12]  G. Letac,et al.  A tutorial on non central Wishart distributions , 2004 .

[13]  R. Henderson,et al.  A serially correlated gamma frailty model for longitudinal count data , 2003 .

[14]  A. Ferrari,et al.  The noncentral wishart distribution: properties and application to speckle imaging , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.