Inverse scattering from phaseless measurements of the total field on a closed curve.

A new approach for quantitative electromagnetic imaging of scatterers located in free space from phaseless data is proposed and discussed. The procedure splits the problem into two steps. In the first one, we solve a phase-retrieval problem for the total field, thus estimating the amplitude and phase of the scattered field. Careful analysis of properties and possible representations of both scattered and incident fields allow us to introduce a criterion for an optimal choice of the measurement setup and a successful retrieval. Then the complex permittivity profile is reconstructed in the second step by use of the estimated scattered field. Numerical examples are provided to check the whole chain in the presence of noise-corrupted data.

[1]  James R. Fienup,et al.  Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint , 1987 .

[2]  Peter Monk,et al.  The detection and monitoring of leukemia using electromagnetic waves: mathematical theory , 1994 .

[3]  Giovanni Leone,et al.  Radiation pattern evaluation from near-field intensities on planes , 1996 .

[4]  T. Isernia,et al.  Inverse scattering with real data: detecting and imaging homogeneous dielectric objects , 2001 .

[5]  Anthony J. Devaney,et al.  Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography , 1993 .

[6]  Richard Barakat,et al.  Algorithms for reconstruction of partially known, band-limited Fourier-transform pairs from noisy data , 1985 .

[7]  D. L. Misell Comment onA method for the solution of the phase problem in electron microscopy , 1973 .

[8]  Takashi Takenaka,et al.  Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field , 1997 .

[9]  Vito Pascazio,et al.  Inverse scattering problems with multifrequency data: reconstruction capabilities and solution strategies , 2000, IEEE Trans. Geosci. Remote. Sens..

[10]  David J. Daniels,et al.  Surface-Penetrating Radar , 1996 .

[11]  M. D'Urso,et al.  Advances in microwave tomography: phaseless measurements and layered backgrounds , 2003, Proceedings of the 2nd International Workshop onAdvanced Ground Penetrating Radar, 2003..

[12]  Vito Pascazio,et al.  Subsurface inverse scattering problems: quantifying, qualifying, and achieving the available information , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Anthony J. Devaney,et al.  Tomographic reconstruction from optical scattered intensities , 1992 .

[14]  P.M. Meaney,et al.  An active microwave imaging system for reconstruction of 2-D electrical property distributions , 1995, IEEE Transactions on Biomedical Engineering.

[15]  Weng Cho Chew,et al.  Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..

[16]  E. Wolf Determination of the Amplitude and the Phase of Scattered Fields by Holography , 1970 .

[17]  J. Richmond Scattering by a dielectric cylinder of arbitrary cross section shape , 1965 .

[18]  D. Morris Phase retrieval in the radio holography of reflector antennas and radio telescopes , 1985 .

[19]  D. R. DeBoer,et al.  Use of microwave lenses in phase retrieval microwave holography of reflector antennas , 2002 .

[20]  Vito Pascazio,et al.  On the local minima in a tomographic imaging technique , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Thomas S. Huang,et al.  Unique reconstruction of a band-limited multidimensional signal from its phase or magnitude , 1983 .

[22]  Yahya Rahmat-Samii,et al.  Phaseless bi-polar planar near-field measurements and diagnostics of array antennas , 1999 .

[23]  Vito Pascazio,et al.  A nonlinear estimation method in tomographic imaging , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  Tapan K. Sarkar,et al.  A direct optimization approach for source reconstruction and NF-FF transformation using amplitude-only data , 2002 .

[25]  A. Devaney Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[26]  G. Leone,et al.  Far-field pattern determination from the near-field amplitude on two surfaces , 1990 .

[27]  O. Bucci,et al.  Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples , 1998 .

[28]  M A Fiddy,et al.  Inversion of optical scattered field data , 1986 .

[29]  G. Newsam,et al.  Necessary conditions for a unique solution to two‐dimensional phase recovery , 1984 .

[30]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[31]  P. M. Berg,et al.  A total variation enhanced modified gradient algorithm for profile reconstruction , 1995 .

[32]  T. Isernia,et al.  Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  H M Hertz,et al.  Tunable differential interferometer for optical tomography. , 1989, Applied optics.

[34]  Tommaso Isernia,et al.  Electromagnetic inverse scattering: Retrievable information and measurement strategies , 1997 .

[35]  T. Isernia,et al.  Role of support information and zero locations in phase retrieval by a quadratic approach , 1999 .