Analysis of tool temperature fluctuation in interrupted cutting

Abstract A unidimensional model for temperature distribution in the tool during intermittent cutting is presented. The tool-chip interface heating is approximated by a periodic rectangular heat flux. The effects of cutting time ratio, frequency of temperature fluctuation and thermal diffusivity of the tool material on internal temperature distribution and on thermal stresses developed in the tool have been discussed. With increasing cutting frequency, the temperature gradient in the cutting zone increases, but with higher thermal diffusivity of the tool material, it diminishes. The magnitude of thermal stresses increases with increase in amplitude of temperature fluctuation