Quantum Secure Direct Communication Network with Two-Step Protocol

An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein?Podolsky?Rosen (EPR) pair block as the quantum information carrier. The server, say Alice, prepares and measures the EPR pairs in the quantum communication and the users perform the four local unitary operations to encode their message. Anyone of the legitimate users can communicate another one on the network securely. Since almost all of the instances in this scheme are useful and each EPR pair can carry two bits of information, the efficiency for qubits and the source capacity both approach the maximal values.

[1]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[2]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[5]  Kaoru Shimizu,et al.  Communication channels secured from eavesdropping via transmission of photonic Bell states , 1999 .

[6]  Yan Feng-Li,et al.  Controlled quantum teleportation and secure direct communication , 2005 .

[7]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[8]  Yan Xia,et al.  Quantum Dialogue by Using the GHZ State , 2006 .

[9]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[10]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[11]  S. Barnett,et al.  Multi-user Quantum Cryptography on Optical Networks , 1995 .

[12]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[13]  Zhi-Xi Wang,et al.  Quantum Secure Conditional Direct Communication via EPR Pairs , 2005 .

[14]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Zhan-jun Zhang,et al.  Improved Wójcik's eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss , 2004, quant-ph/0411030.

[16]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[17]  Paul D. Townsend,et al.  Quantum cryptography on multiuser optical fibre networks , 1997, Nature.

[18]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[19]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[20]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[21]  Gao Ting,et al.  A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties , 2005 .

[22]  M. Gomaa,et al.  Reaction of N1,N2-Diarylamidines with 2,3-Diphenylcyclopropenone , 2004 .

[23]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[24]  Zhi-Xi Wang,et al.  Quantum secure direct communication by Einstein-Podolsky-Rosen pairs and entanglement swapping , 2004, quant-ph/0406083.

[25]  Deng Fu-Guo,et al.  A Theoretical Scheme for Multi-user Quantum Key Distribution with N Einstein-Podolsky-Rosen Pairs on a Passive Optical Network , 2002 .

[26]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[27]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[28]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[29]  Zhan-jun Zhang,et al.  Improving Wojcik's eavesdropping attack on the ping-pong protocol , 2004 .

[30]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[31]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[32]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[33]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[34]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[35]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[36]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[37]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[38]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[39]  Vlatko Vedral,et al.  Security of EPR-based quantum cryptography against incoherent symmetric attacks , 2001 .

[40]  Zhan-jun Zhang,et al.  The improved Bostrom-Felbinger protocol against attacks without eavesdropping , 2004 .

[41]  Kaoru Shimizu,et al.  Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication , 2000 .