Free Vibration Analysis of Composite and Sandwich Plates by a Trigonometric Layerwise Deformation Theory and Radial Basis Functions

In this study trigonometric layerwise deformation theory is used for the analysis of free vibration of symmetric composite plates. A meshless discretization method based on global multiquadric radial basis functions is used. The equations of motion and the boundary conditions are derived and interpolated by radial basis functions. This method is applied to the free vibration analysis of composite and sandwich plates. The results are then compared with analytical and numerical solutions. The results show that the use of trigonometric layerwise deformation theory discretized with multiquadrics provides very good solutions for the free vibration of composite and sandwich plates.

[1]  S. T. Mau,et al.  A Refined Laminated Plate Theory , 1973 .

[2]  R. Jorge,et al.  Analysis of composite plates by trigonometric shear deformation theory and multiquadrics , 2005 .

[3]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[4]  J. Ren,et al.  A new theory of laminated plate , 1986 .

[5]  J. Reddy Energy and variational methods in applied mechanics : with an introduction to the finite element method , 1984 .

[6]  C. Sun,et al.  Theory of Laminated Plates , 1971 .

[7]  António J.M. Ferreira,et al.  Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization , 2005 .

[8]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[9]  E. Reissner,et al.  A Consistent Treatment of Transverse Shear Deformations in Laminated Anisotropic Plates , 1972 .

[10]  R. P. Shimpi,et al.  A beam finite element based on layerwise trigonometric shear deformation theory , 2001 .

[11]  H. Arya,et al.  A Higher Order Displacement Model for the Plate Analysis , 2003 .

[12]  C.M.C. Roque,et al.  Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method , 2003 .

[13]  Erasmo Carrera,et al.  Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis , 1998 .

[14]  J. Carleone,et al.  Transverse shear in laminated plate theories. , 1973 .

[15]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[16]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[17]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[18]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[19]  M Discuiva AN IMPROVED SHEAR DEFORMATION THEORY FOR MODERATELY THICK MULTILAYERED ANISOTROPIC SHELLS AND PLATES , 1987 .

[20]  C. Sun,et al.  A higher order theory for extensional motion of laminated composites , 1973 .

[21]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[22]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[23]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[24]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[25]  K. M. Liew,et al.  Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method , 2003 .

[26]  António J.M. Ferreira,et al.  Thick Composite Beam Analysis Using a Global Meshless Approximation Based on Radial Basis Functions , 2003 .

[27]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .

[28]  Liviu Librescu,et al.  Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. II - Buckling and free vibration , 1988 .

[29]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[30]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[31]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[32]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[33]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[34]  E. Carrera,et al.  Zig-Zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates , 1997 .

[35]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[36]  R. Shenoi,et al.  Free vibration analysis of composite sandwich plates , 1999 .

[37]  J. Whitney,et al.  The Effect of Transverse Shear Deformation on the Bending of Laminated Plates , 1969 .

[38]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[39]  Hemendra Arya,et al.  A zigzag model for laminated composite beams , 2002 .

[40]  R. A. Shenoi,et al.  Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory , 2002 .

[41]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .