Chemical speciation in Gd−Cd−M (M=Zn, Au) quasicrystal approximants

[1]  D. Morikawa,et al.  Structural-transition-driven antiferromagnetic to spin-glass transition in Cd–Mg–Tb 1/1 approximants , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  A. Tsai,et al.  Magnetic properties of icosahedral quasicrystals and their cubic approximants in the Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. Tsai,et al.  Icosahedral quasicrystals and their cubic approximants in the Cd-Mg-RE (RE = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm) systems , 2020 .

[4]  P. Canfield New materials physics , 2019, Reports on progress in physics. Physical Society.

[5]  G. Miller,et al.  Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization. , 2018, Accounts of chemical research.

[6]  A. Tsai,et al.  Atomic structures of ternary Yb–Cd–Mg icosahedral quasicrystals and a 1/1 approximant , 2017 .

[7]  H. Ipser,et al.  Reinvestigation of the Cd–Gd phase diagram , 2014, Journal of alloys and compounds.

[8]  A. Goldman Magnetism in icosahedral quasicrystals: current status and open questions , 2014, Science and technology of advanced materials.

[9]  P. Canfield,et al.  Magnetic and transport properties of i-R-Cd icosahedral quasicrystals (R=Y,Gd-Tm) , 2014, 1406.4522.

[10]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[11]  Min Gyu Kim,et al.  Antiferromagnetic order and the structural order–disorder transition in the Cd6Ho quasicrystal approximant , 2013 .

[12]  P. Canfield,et al.  A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. , 2013, Nature materials.

[13]  H. Schober,et al.  Tetrahedron dynamics in the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and the cubic 1/1-approximant Zn6Sc , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  T. Takeuchi,et al.  Electrical and Magnetic Properties of Quasicrystal Approximants RCd6 (R: Rare Earth) , 2012 .

[15]  T. Takabatake,et al.  Long-range magnetic order in the quasicrystalline approximant Cd 6 Tb , 2010 .

[16]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[17]  P. Canfield,et al.  The coloring problem in intermetallics: bonding and properties of Tb3Zn3.6Al7.4 with the La3Al11 structure type , 2005 .

[18]  Cesar Pay Gómez,et al.  Comparative structural study of the disordered MCd 6 quasicrystal approximants , 2003 .

[19]  Cesar Pay Gómez,et al.  Structure of Ca13 Cd76 : A Novel Approximant to the MCd5.7 Quasicrystals (M=Ca, Yb). , 2001, Angewandte Chemie.

[20]  G. Miller The “Coloring Problem” in Solids: How It Affects Structure, Composition and Properties , 1998 .

[21]  Leland C. Allen,et al.  Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .

[22]  M. L. Fornasini,et al.  The gadolinium-cadmium system , 1971 .

[23]  D. Cromer,et al.  The crystal structure of YCd6 , 1971 .

[24]  A. Tsai,et al.  Crystal chemistry and chemical order in ternary quasicrystals and approximants , 2014 .

[25]  Akiji Yamamoto,et al.  Atomic structure of the binary icosahedral Yb-Cd quasicrystal. , 2007, Nature materials.