Differential analysis of protein expression of Bifidobacterium grown on different carbohydrates.

[1]  Liuyu Huang,et al.  A Proteome Reference Map and Proteomic Analysis of Bifidobacterium longum NCC2705*S , 2006, Molecular & Cellular Proteomics.

[2]  Yue-hua Hu,et al.  Analysis of differential protein expression in Acidithiobacillus ferrooxidans grown under different energy resources respectively using SELDI-ProteinChip technologies. , 2006, Journal of microbiological methods.

[3]  H. Harmsen,et al.  Colonic fermentation may play a role in lactose intolerance in humans. , 2006, The Journal of nutrition.

[4]  M. Priebe,et al.  Identification of bacteria with beta-galactosidase activity in faeces from lactase non-persistent subjects. , 2005, FEMS microbiology ecology.

[5]  Albert Sickmann,et al.  Mass spectrometry-based peptide quantification: applications and limitations , 2005, Expert review of proteomics.

[6]  K. Soman,et al.  Differential protein expression profiles of gastric epithelial cells following Helicobacter pylori infection using ProteinChips. , 2005, Journal of proteome research.

[7]  Sharon Chen,et al.  Mass spectrometry-based quantitative proteomic profiling. , 2005, Briefings in functional genomics & proteomics.

[8]  R. Vonk,et al.  Proteomic analyzes of copper metabolism in an in vitro model of Wilson disease using surface enhanced laser desorption/ionization‐time of flight‐mass spectrometry , 2004, Journal of cellular biochemistry.

[9]  T. Born,et al.  Use of surface‐enhanced laser desorption/ionization ‐time of flight to explore bacterial proteomes , 2004, Proteomics.

[10]  L. De Vuyst,et al.  Short Fractions of Oligofructose Are Preferentially Metabolized by Bifidobacterium animalis DN-173 010 , 2004, Applied and Environmental Microbiology.

[11]  H. Harmsen,et al.  The Role of Colonic Microbiota in Lactose Intolerance , 2004, Digestive Diseases and Sciences.

[12]  T. Wadström,et al.  Short communication The rapid detection of low molecular mass proteins differentially expressed under biological stress for four Helicobacter spp. using ProteinChip® technology , 2003, Proteomics.

[13]  Peer Bork,et al.  The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Harmsen,et al.  Extensive Set of 16S rRNA-Based Probes for Detection of Bacteria in Human Feces , 2002, Applied and Environmental Microbiology.

[15]  Thomas P Conrads,et al.  The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. , 2002, Biochemical and biophysical research communications.

[16]  R. Burne,et al.  Pathways for lactose/galactose catabolism by Streptococcus salivarius. , 2002, FEMS microbiology letters.

[17]  M. de Vrese,et al.  Probiotics--compensation for lactase insufficiency. , 2001, The American journal of clinical nutrition.

[18]  M. Roberfroid Prebiotics and probiotics: are they functional foods? , 2000, The American journal of clinical nutrition.

[19]  D. Hochstrasser,et al.  The dynamic range of protein expression: A challenge for proteomic research , 2000, Electrophoresis.

[20]  R. Rolfe The role of probiotic cultures in the control of gastrointestinal health. , 2000, The Journal of nutrition.

[21]  K. Arunachalam ROLE OF BIFIDOBACTERIA IN NUTRITION, MEDICINE AND TECHNOLOGY , 1999 .

[22]  G. Stewart,et al.  Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway , 1991, Journal of bacteriology.