Concept of a Resilient Process Chain to Control Uncertainty of a Hydraulic Actuator

Narrow tolerances are commonly used to control uncertainty in the production of technicalcomponents. However, narrow tolerances lead to financial expense and limit flexibility. In this paperthe concept of a resilient process chain is presented. This concept covers the product life cycle phases ofproduction and usage. It is enabled by the digitalization in mechanical engineering and offers access tovariable process windows instead of rigid tolerances. First steps of this concept are then applied to the TU Darmstadt active air spring. The active air spring can be used to increase the driving comfort in avehicle or, for instance, to minimize kinetosis during autonomous driving. The focus hereby is toidentify possible production influences on the behaviour of the components usage. For this purpose, theactuator of the active air spring is specifically manufactured with typical uncertainty of high precisionmachining of the bore and characterized experimentally in a test rig. The results show an influenceof the production on the efficiency of the actuator. The measurements are fundamental to establish aresilient process chain on the active air spring.

[1]  Eberhard Abele,et al.  Modeling of process forces with consideration of tool wear for machining of sintered steel alloy for application to valve seat in a combustion engine , 2017, Prod. Eng..

[2]  P. Hedrich Konzeptvalidierung einer aktiven Luftfederung im Kontext autonomer Fahrzeuge , 2018 .

[3]  Peter F. Pelz,et al.  Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring , 2016 .

[4]  Peter F. Pelz,et al.  Active Pneumatic Suspension for Future Autonomous Vehicles: Design, Prove of Concept and Hardware-in-the-Loop Simulations , 2018 .

[5]  Eberhard Abele,et al.  Control of Uncertainty in High Precision Cutting Processes: Reaming of Valve Guides in a Cylinder Head of a Combustion Engine , 2015 .

[6]  Richard E. DeVor,et al.  Mechanistic model for the reaming process with emphasis on process faults , 2006 .

[7]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[8]  Eric Lenz,et al.  Aktive Luftfederung – Modellierung, Regelung und Hardware-in-the-Loop-Experimente , 2018 .

[9]  Peter F. Pelz,et al.  Minimierung von Kinetose beim autonomen Fahren , 2018 .

[10]  Peter F. Pelz,et al.  Minimizing of Kinetosis during Autonomous Driving , 2018 .

[11]  Frank Koppka A Contribution to the Maximization of Productivity and Workpiece Quality of the Reaming Process by Analyzing its Static and Dynamic Behaviour- An Analysis with Focus on Automotive Powertrain Production , 2009 .

[12]  Eberhard Abele,et al.  Modellierung der geometrischen Eingriffsbedingungen bei der Ventilsitzbearbeitung am Zylinderkopf , 2014 .

[13]  Peter F. Pelz,et al.  Modellbildung, Regelung und experimentelle Untersuchung einer aktiven Luftfederung in einer Hardware-in-the-Loop-Simulationsumgebung , 2017 .

[14]  Thomas Hauer Modellierung der Werkzeugabdrängung beim Reiben – Ableitung von Empfehlungen für die Gestaltung von Mehrschneidenreibahlen , 2012 .

[15]  Eberhard Abele,et al.  Modellierung der Prozesskräfte beim Reiben mit Mehrschneidenreibahlen - Implementierung eines Kraftmodells für die Simulation der Reibbearbeitung , 2011 .