Reduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)

Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel perimeter and tyre width. Experiments have been conducted based on central composite rotatable design matrix. A mathematical model has been developed for the robot using Response Surface Methodology (RSM) with the help of MINITAB software. An optimum condition for minimum odometry error was obtained by using Excel (XL) Solver.

[1]  Xiaogang Ruan,et al.  Bionic autonomous learning control of a two-wheeled self-balancing flexible robot , 2011 .

[2]  Lindsay Kleeman,et al.  Odometry Error Covariance Estimation for Two Wheel Robot Vehicles , 1995 .

[3]  Q. Zhan,et al.  Path tracking control of a spherical mobile robot , 2012 .

[4]  Wei-Wei Wu,et al.  Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot , 2006 .

[5]  Johann Borenstein,et al.  Methods for the Reduction of Odometry Errors in Over-Constrained Mobile Robots , 2004, Auton. Robots.

[6]  Johann Borenstein,et al.  UMBmark : a method for measuring, comparing, and correcting dead-reckoning errors in mobile robots , 1994 .

[7]  Maciej Trojnacki Analysis of influence of drive system configurations of a four wheelled robot on its mobility , 2012 .

[8]  Kiyoshi Komoriya,et al.  Position estimation of a mobile robot using optical fiber gyroscope (OFG) , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[9]  Hugh F. Durrant-Whyte,et al.  Orientation estimate for mobile robots using gyroscopic information , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[10]  Johann Borenstein,et al.  Experimental results from internal odometry error correction with the OmniMate mobile robot , 1998, IEEE Trans. Robotics Autom..

[11]  Woojin Chung,et al.  Accurate calibration of kinematic parameters for two wheel differential mobile robots , 2011 .

[12]  Chaoli Wang,et al.  Dynamic feedback robust stabilization of nonholonomic mobile robots based on visual servoing , 2010 .

[13]  Behzad Moshiri,et al.  A NEW APPROACH TO SELF-LOCALIZATION FOR MOBILE ROBOTS USING SENSOR DATA FUSION , 2002 .

[15]  Alberto Valero-Gomez,et al.  Motion control of differential wheeled robots with joint limit constraints , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[16]  M. Gini,et al.  Non-uniform dead-reckoning position estimate updates , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[17]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[18]  M. H. Korayem,et al.  Design, modelling and errors measurement of wheeled mobile robots , 2006 .

[19]  Julian Lategahn,et al.  MOBILE ROBOT LOCALIZATION USING WLAN, ODOMETRY AND GYROSCOPE DATA , 2010 .

[20]  Moharam Habibnejad Korayem,et al.  INVESTIGATION ON THE EFFECT OF DIFFERENT PARAMETERS IN WHEELED MOBILE ROBOT ERROR , 2007 .

[21]  John M. Evans,et al.  HelpMate: an autonomous mobile robot courier for hospitals , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[22]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[23]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[24]  Mohammad Eghtesad,et al.  Study of the internal dynamics of an autonomous mobile robot , 2006, Robotics Auton. Syst..

[25]  Jack Hollingum CATERPILLAR MAKE THE EARTH MOVE: AUTOMATICALLY , 1991 .

[26]  James L. Crowley,et al.  Position estimation for a mobile robot using vision and odometry , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.