Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues

[1]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[2]  I. Deary,et al.  Genetic and environmental determinants of stressful life events and their overlap with depression and neuroticism , 2017, bioRxiv.

[3]  Nick C Fox,et al.  A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers , 2018, Brain : a journal of neurology.

[4]  B. Bergmans,et al.  No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients , 2018, Neurobiology of Aging.

[5]  C. van Broeckhoven,et al.  ALS Genes in the Genomic Era and their Implications for FTD. , 2018, Trends in genetics : TIG.

[6]  Kevin F. Bieniek,et al.  Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study , 2018, Lancet Neurology.

[7]  C. van Broeckhoven,et al.  Genotype–phenotype links in frontotemporal lobar degeneration , 2018, Nature Reviews Neurology.

[8]  Konrad J. Karczewski,et al.  Integrative omics for health and disease , 2018, Nature Reviews Genetics.

[9]  H. Braak,et al.  Hot-spot KIF5A mutations cause familial ALS , 2018, Brain : a journal of neurology.

[10]  O. Andreassen,et al.  Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies , 2018, PLoS medicine.

[11]  A. Lehmann,et al.  Xeroderma pigmentosum is a definite cause of Huntington's disease‐like syndrome , 2017, Annals of clinical and translational neurology.

[12]  A. Levey,et al.  A proteomic network approach across the ALS‐FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain , 2017, EMBO molecular medicine.

[13]  John Hardy,et al.  Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences , 2016, Briefings Bioinform..

[14]  C. Manzoni,et al.  Genetic Risk Factors for Sporadic Frontotemporal Dementia , 2018 .

[15]  B. Miller,et al.  Frontotemporal dementia. , 2018, Handbook of clinical neurology.

[16]  J. McDonald,et al.  Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency , 2017, Cell reports.

[17]  Z. Modrušan,et al.  Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation , 2017, The Journal of experimental medicine.

[18]  M. Mesulam,et al.  TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics , 2017, Neuron.

[19]  Qiudong Deng,et al.  Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by GRN Mutations , 2017, eNeuro.

[20]  J. Rowe,et al.  Genetic screening in sporadic ALS and FTD , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[21]  D. Levy,et al.  The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity , 2017, The Journal of experimental medicine.

[22]  S. P. Andrews,et al.  Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities , 2017, Neuron.

[23]  A. Al-Chalabi,et al.  Gene discovery in amyotrophic lateral sclerosis: implications for clinical management , 2017, Nature Reviews Neurology.

[24]  J. Hardy,et al.  Weighted Protein Interaction Network Analysis of Frontotemporal Dementia , 2016, Journal of proteome research.

[25]  R. Iozzo,et al.  EphA2 is a functional receptor for the growth factor progranulin , 2016, The Journal of cell biology.

[26]  A. Singleton,et al.  Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis , 2016, Neurobiology of Aging.

[27]  P. Svenningsson,et al.  Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. , 2016, American journal of human genetics.

[28]  M. Glickman,et al.  UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome , 2016, Cell.

[29]  I. Mackenzie,et al.  Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies , 2016, Journal of neurochemistry.

[30]  D. Dormann,et al.  Altered mRNP granule dynamics in FTLD pathogenesis , 2016, Journal of neurochemistry.

[31]  L. Bodea,et al.  Tau physiology and pathomechanisms in frontotemporal lobar degeneration , 2016, Journal of neurochemistry.

[32]  E. Buratti,et al.  Physiological functions and pathobiology of TDP‐43 and FUS/TLS proteins , 2016, Journal of neurochemistry.

[33]  B. Dubois,et al.  Defining the spectrum of frontotemporal dementias associated with TARDBP mutations , 2016, Neurology: Genetics.

[34]  Michelle K. Cahill,et al.  Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation , 2016, Cell.

[35]  I. Santana,et al.  Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation , 2016, Neurobiology of Aging.

[36]  A. Chen-Plotkin,et al.  Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. , 2016, Human molecular genetics.

[37]  Robert H. Brown,et al.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia , 2016, Nature Communications.

[38]  R. Rademakers,et al.  Genetics of FTLD: overview and what else we can expect from genetic studies , 2016, Journal of neurochemistry.

[39]  Jason D. Warren,et al.  Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis , 2016, Molecular Neurodegeneration.

[40]  J. Hort,et al.  Clinicopathological description of two cases with SQSTM1 gene mutation associated with frontotemporal dementia , 2016, Neuropathology : official journal of the Japanese Society of Neuropathology.

[41]  C. van Broeckhoven,et al.  Clinical features of TBK1 carriers compared with C9orf72, GRN and non-mutation carriers in a Belgian cohort , 2015, Brain : a journal of neurology.

[42]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[43]  C. van Broeckhoven,et al.  Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort , 2015, Neurology.

[44]  B. Kaang,et al.  TMEM106B, a frontotemporal lobar dementia (FTLD) modifier, associates with FTD-3-linked CHMP2B, a complex of ESCRT-III , 2015, Molecular Brain.

[45]  M. Komatsu,et al.  p62/SQSTM1 functions as a signaling hub and an autophagy adaptor , 2015, The FEBS journal.

[46]  J. Ravits,et al.  Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. , 2015, Neurologic clinics.

[47]  Daniele Pepe,et al.  A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia , 2015, Neurobiology of Aging.

[48]  L. Takada The Genetics of Monogenic Frontotemporal Dementia , 2015, Dementia & neuropsychologia.

[49]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[50]  Keith A. Johnson,et al.  Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging , 2015, Neuropathology and applied neurobiology.

[51]  C. Broeckhoven,et al.  C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2015 .

[52]  J. Hardy,et al.  Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not , 2014, Experimental Neurology.

[53]  S. Rivaud-Pechoux,et al.  Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions , 2014, Neurobiology of Aging.

[54]  H. Meyer,et al.  The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis , 2014, Journal of Cell Science.

[55]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[56]  L. Tsai,et al.  DNA Damage and Its Links to Neurodegeneration , 2014, Neuron.

[57]  E. Génin,et al.  A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. , 2014, Brain : a journal of neurology.

[58]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[59]  J. Kirby,et al.  The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype , 2014, Acta Neuropathologica.

[60]  P. McColgan,et al.  C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[61]  D. Mari,et al.  Incomplete penetrance of the C9ORF72 hexanucleotide repeat expansions: frequency in a cohort of geriatric non-demented subjects. , 2014, Journal of Alzheimer's disease : JAD.

[62]  J. Hardy,et al.  SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. , 2013, JAMA neurology.

[63]  P. Momeni,et al.  Molecular Genetics of Frontotemporal Dementia , 2013 .

[64]  P. Tacconi,et al.  The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson's disease and other degenerative parkinsonisms , 2013, neurogenetics.

[65]  P. Johannsen,et al.  Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease , 2013, Clinical genetics.

[66]  L. Furlong Human diseases through the lens of network biology. , 2013, Trends in genetics : TIG.

[67]  J. Terzic,et al.  Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates , 2013, Journal of Cell Science.

[68]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[69]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[70]  F. Tagliavini,et al.  Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome. , 2013, Journal of Alzheimer's disease : JAD.

[71]  L. Schöls,et al.  Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype , 2012, Neurobiology of Aging.

[72]  N. Cairns,et al.  Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects , 2012, Acta Neuropathologica.

[73]  Pietro Pietrini,et al.  Screening for C9ORF72 repeat expansion in FTLD , 2012, Neurobiology of Aging.

[74]  J. Grafman,et al.  FUS and TDP43 genetic variability in FTD and CBS , 2012, Neurobiology of Aging.

[75]  Ewout J. N. Groen,et al.  VCP mutations in familial and sporadic amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[76]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[77]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[78]  I. Mackenzie,et al.  Advances in understanding the molecular basis of frontotemporal dementia. , 2012, Nature reviews. Neurology.

[79]  J. Rohrer,et al.  Phenotypic signatures of genetic frontotemporal dementia. , 2011, Current opinion in neurology.

[80]  N. Dantuma,et al.  The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks , 2011, Nature Structural &Molecular Biology.

[81]  Shreya Paliwal,et al.  The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks , 2011, Nature Cell Biology.

[82]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[83]  W. Weissenhorn,et al.  Charged Multivesicular Body Protein 2B (CHMP2B) of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) Polymerizes into Helical Structures Deforming the Plasma Membrane* , 2011, The Journal of Biological Chemistry.

[84]  J. Hardy,et al.  Frontotemporal Dementia: From Mendelian Genetics Towards Genome Wide Association Studies , 2011, Journal of Molecular Neuroscience.

[85]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[86]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[87]  B. Oostra,et al.  Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson’s disease in Sardinia , 2011, neurogenetics.

[88]  J. Morris,et al.  Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.

[89]  P. Johannsen,et al.  Frontotemporal Dementia Caused by CHMP2B Mutations , 2011, Current Alzheimer research.

[90]  Zhinan Yin,et al.  The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice , 2011, Science.

[91]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[92]  G. Giglia-Mari,et al.  DNA damage response. , 2011, Cold Spring Harbor perspectives in biology.

[93]  William T. Hu,et al.  Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis , 2011, Acta Neuropathologica.

[94]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[95]  G. Comi,et al.  TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. , 2010, Rejuvenation research.

[96]  V. Haroutunian,et al.  Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy , 2010, Neuron.

[97]  Nick C Fox,et al.  Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[98]  V. Haroutunian,et al.  Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy , 2010, Neuron.

[99]  W. Sundquist,et al.  Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance , 2010, Proceedings of the National Academy of Sciences.

[100]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[101]  Bruce L. Miller,et al.  Frontotemporal lobar degeneration , 2010, CNS drugs.

[102]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[103]  P. Deyn,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010 .

[104]  M. Luca,et al.  Mutation within TARDBP leads to Frontotemporal Dementia without motor neuron disease , 2009, Human mutation.

[105]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[106]  B. Dubois,et al.  TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration , 2009, Annals of neurology.

[107]  J. Trojanowski,et al.  Brain progranulin expression in GRN-associated frontotemporal lobar degeneration , 2009, Acta Neuropathologica.

[108]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[109]  C. Broeckhoven,et al.  Granulin mutations associated with frontotemporal lobar degeneration and related disorders: An update , 2008, Human mutation.

[110]  Peter Heutink,et al.  Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia , 2008, The Lancet Neurology.

[111]  F. Tagliavini,et al.  A new function of microtubule-associated protein tau: Involvement in chromosome stability , 2008, Cell cycle.

[112]  P. Carmeliet,et al.  Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival , 2008, The Journal of cell biology.

[113]  Marc Cruts,et al.  Loss of progranulin function in frontotemporal lobar degeneration. , 2008, Trends in genetics : TIG.

[114]  T. Manolio,et al.  How to Interpret a Genome-wide Association Study Topic Collections , 2022 .

[115]  D. Rubinsztein,et al.  A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. , 2008, Human molecular genetics.

[116]  Patrick Santens,et al.  CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. , 2008, Human molecular genetics.

[117]  I. Mackenzie,et al.  The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments , 2007, Neurogenetics.

[118]  G. Raposo,et al.  Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes , 2006, The Journal of cell biology.

[119]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[120]  S. Reske,et al.  Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD , 2005, Annals of neurology.

[121]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[122]  K. Huse,et al.  Sarcoidosis is associated with a truncating splice site mutation in BTNL2 , 2005, Nature Genetics.

[123]  Vladimir V. Frolkis,et al.  Neurobiology of Aging , 2019, Psychobiology of Behaviour.

[124]  G. Serrero,et al.  PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. , 2004, Carcinogenesis.

[125]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[126]  Zhiheng He,et al.  Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis , 2003, Journal of Molecular Medicine.

[127]  C. H. Ong,et al.  Progranulin is a mediator of the wound response , 2003, Nature Medicine.

[128]  T. Honjo,et al.  DNA Double-Strand Breaks , 2002, The Journal of experimental medicine.

[129]  Julie S Snowden,et al.  Frontotemporal dementia , 2002, British Journal of Psychiatry.

[130]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[131]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.

[132]  J. Hardy,et al.  Familial non-specific dementia maps to chromosome 3. , 1995, Human molecular genetics.

[133]  P. Mcgeer,et al.  Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains , 1988, Neurology.

[134]  北村 聖 "The New England Journal of Medicine". , 1962, British medical journal.