Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1.

[1]  S. Kimura,et al.  Targeting of BMI-1 expression by the novel small molecule PTC596 in mantle cell lymphoma , 2018, Oncotarget.

[2]  Xin Zhou,et al.  Pan-cancer genome and transcriptome analyses of 1,699 pediatric leukemias and solid tumors , 2018, Nature.

[3]  H. Ludwig,et al.  Preclinical Evaluation of the First in Class BMI1 Inhibitor PTC-028 Confirms Potent Efficacy to Target BMI1-Addiction in Multiple Myeloma , 2017 .

[4]  Lisa C. Wallace,et al.  Targeting Glioma Stem Cells through Combined BMI1 and EZH2 Inhibition , 2017, Nature Medicine.

[5]  G. Shapiro,et al.  Phase 1 results of PTC596, a novel small molecule targeting cancer stem cells (CSCs) by reducing levels of BMI1 protein. , 2017 .

[6]  A. Iwama,et al.  The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells , 2017, Blood Cancer Journal.

[7]  Kol Jia Yong,et al.  Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression , 2016, Science Translational Medicine.

[8]  R. DiPaola,et al.  BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer , 2016, Clinical Cancer Research.

[9]  Goberdhan P Dimri,et al.  A miR-200c/141-BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells , 2016, Oncotarget.

[10]  Resham Bhattacharya,et al.  Inhibition of BMI1 induces autophagy-mediated necroptosis , 2016, Autophagy.

[11]  H. Ludwig,et al.  Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment , 2016, Journal of Hematology & Oncology.

[12]  E. Wolf,et al.  The target cell of transformation is distinct from the leukemia stem cell in murine CALM/AF10 leukemia models , 2016, Leukemia.

[13]  S. Armstrong,et al.  The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. , 2015, Molecular cell.

[14]  P. Lagadec,et al.  The BMI1 polycomb protein represses cyclin G2-induced autophagy to support proliferation in chronic myeloid leukemia cells , 2015, Leukemia.

[15]  F. Aguet,et al.  Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology , 2015, Haematologica.

[16]  M. Pichler,et al.  The role of polycomb repressive complexes in biliary tract cancer , 2015, Expert opinion on therapeutic targets.

[17]  S. Armstrong,et al.  AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. , 2014, Cancer cell.

[18]  S. Morrison,et al.  Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain , 2014, eLife.

[19]  A. Krešo,et al.  Self-renewal as a therapeutic target in human colorectal cancer , 2013, Nature Medicine.

[20]  S. Armstrong,et al.  Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. , 2013, Blood.

[21]  D. Wechsler,et al.  The PICALM Protein Plays a Key Role in Iron Homeostasis and Cell Proliferation , 2012, PloS one.

[22]  C. Lottaz,et al.  CALM/AF10-positive leukemias show upregulation of genes involved in chromatin assembly and DNA repair processes and of genes adjacent to the breakpoint at 10p12 , 2012, Leukemia.

[23]  M. Saleem,et al.  CANCER STEM CELLS Concise Review: Role of BMI1, a Stem Cell Factor, in Cancer Recurrence and Chemoresistance: Preclinical and Clinical Evidences , 2012 .

[24]  T. Abe,et al.  The Clathrin Assembly Protein PICALM Is Required for Erythroid Maturation and Transferrin Internalization in Mice , 2012, PloS one.

[25]  S. Armstrong,et al.  The clathrin-binding domain of CALM and the OM-LZ domain of AF10 are sufficient to induce acute myeloid leukemia in mice , 2011, Leukemia.

[26]  Amanda J. Wilson,et al.  Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. , 2011, Cell stem cell.

[27]  A. Iwama,et al.  Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells , 2011, Leukemia.

[28]  Goberdhan P Dimri,et al.  βTrCP regulates BMI1 protein turnover via ubiquitination and degradation , 2011, Cell cycle.

[29]  E. Vellenga,et al.  Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells , 2010, Current opinion in hematology.

[30]  Raja Jothi,et al.  Genome-Wide uH2A Localization Analysis Highlights Bmi1-Dependent Deposition of the Mark at Repressed Genes , 2009, PLoS genetics.

[31]  C. Muchardt,et al.  The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. , 2009, Genes & development.

[32]  S. Bohlander,et al.  Early target genes of CALM/AF10 as revealed by gene expression profiling , 2008 .

[33]  P. Aplan,et al.  The role of CALM–AF10 gene fusion in acute leukemia , 2008, Leukemia.

[34]  Zhenhua Zhang,et al.  Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice. , 2007, Cancer research.

[35]  W. Hiddemann,et al.  Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. , 2006, Cancer cell.

[36]  Oliver Weichenrieder,et al.  Structure and E3‐ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b , 2006, The EMBO journal.

[37]  Yi Zhang,et al.  Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. , 2005, Molecular cell.

[38]  E. Macintyre,et al.  CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes , 2005, Leukemia.

[39]  Sean J Morrison,et al.  Bmi1, stem cells, and senescence regulation. , 2004, The Journal of clinical investigation.

[40]  M. Greaves,et al.  Origins of chromosome translocations in childhood leukaemia , 2003, Nature Reviews Cancer.

[41]  Mitchell L. Klebig,et al.  Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[43]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[44]  R. Siebert,et al.  Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients , 2000, Leukemia.

[45]  J. Rowley The role of chromosome translocations in leukemogenesis. , 1999, Seminars in hematology.

[46]  S. Bohlander,et al.  Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. , 1999, Molecular biology of the cell.

[47]  F. Hosoda,et al.  Consistent detection of CALM‐AF10 chimaeric transcripts in haematological malignancies with t(10;11)(p13;q14) and identification of novel transcripts , 1999, British journal of haematology.

[48]  W. Hiddemann,et al.  MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. , 1998, Blood.