Convergence of the multipole expansion for electrostatic potentials of finite topological atoms

The exact atomic electrostatic potential (AEP) and atomic multipole moments are calculated using the topological partitioning of the electron density. High rank (l⩽20) spherical tensor multipole moments are used to examine the convergence properties of the multipole expansion. We vary independently the maximum multipole rank, lmax, and the radius of the spherical grid around an atom in a molecule where we measure the discrepancy between the exact AEP and the one obtained via multipole expansion. The root mean square values are between 0.1 and 1.6 kJ/mol for four atoms (C, N, O, S) on a spherical grid with the ρ=0.001 a.u. convergence radius and for lmax=4. Our calculations demonstrate that this fast convergence is due to the decay of the electron density. We show that multipole moments generated by finite atoms are adequate for use in the multipole expansion of the electrostatic potential, contrary to some claims made in the literature. Moreover they can be used to model intermolecular and in principle in...

[1]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[2]  John B. O. Mitchell,et al.  A comparison of three theoretical approaches to the study of side-chain interactions in proteins , 1993 .

[3]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[4]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[5]  A. Stone,et al.  Anisotropic Site-Site Potentials in Molecular Dynamics , 1992 .

[6]  B. A. Hess,et al.  Intermolecular interaction energies by topologically partitioned electric properties II. Dispersion energies in one-centre and multicentre multipole expansions , 1997 .

[7]  Sarah L. Price,et al.  SOME NEW IDEAS IN THE THEORY OF INTERMOLECULAR FORCES - ANISOTROPIC ATOM ATOM POTENTIALS , 1988 .

[8]  Kenneth B. Wiberg,et al.  Origin of rotation and inversion barriers , 1990 .

[9]  C. Chipot,et al.  Statistical analysis of distributed multipoles derived from molecular electrostatic potentials , 1998 .

[10]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[11]  Paul L. A. Popelier,et al.  A method to integrate an atom in a molecule without explicit representation of the interatomic surface , 1998 .

[12]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[13]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[14]  Paul L. A. Popelier,et al.  An analytical expression for interatomic surfaces in the theory of atoms in molecules , 1994 .

[15]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[16]  C. B. Wilson,et al.  The mathematical description of shape and form , 1984 .

[17]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[18]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[19]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[20]  Paul L. A. Popelier,et al.  Atomic partitioning of molecular electrostatic potentials , 2000 .

[21]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[22]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[23]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[24]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[25]  S. Price IS THE ISOTROPIC ATOM-ATOM MODEL POTENTIAL ADEQUATE? , 1988 .

[26]  R. J. Harrison,et al.  An ab initio distributed multipole study of the electrostatic potential around an undecapeptide cyclosporin derivative and a comparison with point charge electrostatic models , 1989 .

[27]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[28]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[29]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[30]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[31]  William H. Press,et al.  Numerical recipes , 1990 .

[32]  Benny G. Johnson,et al.  Computing molecular electrostatic potentials with the PRISM algorithm , 1993 .

[33]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[34]  Curt M. Breneman,et al.  Electron Density Modeling of Large Systems Using the Transferable Atom Equivalent Method , 1995, Comput. Chem..

[35]  R. Bader,et al.  Calculation of the average properties of atoms in molecules. II , 1981 .

[36]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .