Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications

[1]  M. Dargusch,et al.  The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. , 2019, Acta biomaterialia.

[2]  A. Boccaccini,et al.  Modification of in vitro degradation behavior of pure iron with ultrasonication treatment: Comparison of two different pseudo-physiological solutions. , 2019, Materials science & engineering. C, Materials for biological applications.

[3]  Jing-an Li,et al.  Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces , 2018, Molecules.

[4]  C. Felice,et al.  Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. , 2018, Materials science & engineering. C, Materials for biological applications.

[5]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[6]  Yongseok Jun,et al.  Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification , 2018 .

[7]  E. Aghion,et al.  In vivo performances of pure Zn and Zn–Fe alloy as biodegradable implants , 2018, Journal of Materials Science: Materials in Medicine.

[8]  Honglong Shi,et al.  Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles , 2018, Solar Energy Materials and Solar Cells.

[9]  A. Boccaccini,et al.  Biodegradable nanostructures: Degradation process and biocompatibility of iron oxide nanostructured arrays. , 2018, Materials science & engineering. C, Materials for biological applications.

[10]  TörneKarin Beaussant,et al.  Zn–Mg and Zn–Ag degradation mechanism under biologically relevant conditions , 2017 .

[11]  Jeremy Goldman,et al.  The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper , 2017 .

[12]  J. Drelich,et al.  Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling , 2017, Metallurgical and Materials Transactions A.

[13]  W. Ding,et al.  Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  J. Drelich,et al.  Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants. , 2016, ACS biomaterials science & engineering.

[15]  A. Boccaccini,et al.  Tackling Mg alloy corrosion by natural polymer coatings-A review. , 2016, Journal of biomedical materials research. Part A.

[16]  A. Boccaccini,et al.  Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting. , 2016, ACS applied materials & interfaces.

[17]  Oomman K Varghese,et al.  Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. , 2016, Nano letters.

[18]  J. Drelich,et al.  In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. , 2016, ACS biomaterials science & engineering.

[19]  T. Kambe,et al.  The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. , 2015, Physiological reviews.

[20]  A. Boccaccini,et al.  Iron and iron-based alloys for temporary cardiovascular applications , 2015, Journal of Materials Science: Materials in Medicine.

[21]  M. Toney,et al.  Understanding the selective etching of electrodeposited ZnO nanorods. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[22]  P. Chu,et al.  Stimulation of bone growth following zinc incorporation into biomaterials. , 2014, Biomaterials.

[23]  Liguo Wang,et al.  Chemically anchoring of TiO2 coating on OH-terminated Mg3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg–Zn–Ca alloy , 2014 .

[24]  P. Chu,et al.  Surface design of biodegradable magnesium alloys — A review , 2013 .

[25]  P. Schmuki,et al.  Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte , 2013 .

[26]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[27]  J. Drelich,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[28]  D. Thierry,et al.  Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions , 2012 .

[29]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[30]  Ying Dai,et al.  Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. , 2012, ACS applied materials & interfaces.

[31]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[32]  Sannakaisa Virtanen,et al.  Biodegradable Mg and Mg alloys: Corrosion and biocompatibility , 2011 .

[33]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[34]  Liguo Wang,et al.  In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol–gel method , 2011 .

[35]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[36]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[37]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[38]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[39]  D. Thierry,et al.  In situ studies of the corrosion during drying of confined zinc surfaces , 2007 .

[40]  K Michael Hambidge,et al.  Zinc deficiency: a special challenge. , 2007, The Journal of nutrition.

[41]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[42]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[43]  P. Trumbo,et al.  Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. , 1998, Journal of the American Dietetic Association.

[44]  B. Conway,et al.  Zinc Oxidation and Redeposition Processes in Aqueous Alkali and Carbonate Solutions II . Distinction Between Dissolution and Oxide Film Formation Processes , 1987 .

[45]  B. Conway,et al.  Zinc Oxidation and Redeposition Processes in Aqueous Alkali and Carbonate Solutions I . pH and Carbonate Ion Effects in Film Formation and Dissolution , 1987 .

[46]  J. Drelich,et al.  Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. , 2018, Journal of biomedical materials research. Part B, Applied biomaterials.

[47]  I. M. El-Nahhal,et al.  Synthesis & characterization of silica coated and functionalized silica coated zinc oxide nanomaterials , 2016 .

[48]  A. Ennaoui,et al.  XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells , 2003 .