Colloidal CuZnSnSe4−xSx nanocrystals for hybrid solar cells
暂无分享,去创建一个
N. S. Sariciftci | Abdalaziz Aljabour | F. Ozel | M. Ersoz | M. Kuş | Sumeyra Buyukcelebi | Aysenur Erdogan | N. S. Sariçiftçi
[1] A. W. Hassel,et al. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆ , 2013, Electrochimica acta.
[2] S. Adams,et al. Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications , 2013 .
[3] Jiwei Zhang,et al. Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries , 2012 .
[4] A. Pal,et al. Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. , 2012, Physical chemistry chemical physics : PCCP.
[5] F. A. Pulgarin-Agudelo,et al. Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. , 2012, Journal of the American Chemical Society.
[6] Zhiqun Lin,et al. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.
[7] Hongxia Wang. Progress in Thin Film Solar Cells Based on , 2011 .
[8] W. Li,et al. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.
[9] D. Ginley,et al. Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.
[10] P. Dale,et al. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers , 2010 .
[11] David B Mitzi,et al. High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.
[12] M. Bouroushian. Electrochemistry of Metal Chalcogenides , 2010 .
[13] J. Yun,et al. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application , 2010 .
[14] Helmut Neugebauer,et al. Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications , 2010 .
[15] J. Arbiol,et al. Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.
[16] Yong Cao,et al. Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .
[17] B. Parkinson,et al. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.
[18] Xuezhao Shi,et al. Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material , 2009 .
[19] Niyazi Serdar Sariciftci,et al. Hybrid solar cells , 2008 .
[20] S. Schorr. Structural aspects of adamantine like multinary chalcogenides , 2007 .
[21] Chunjoong Kim,et al. Novel SnS2-nanosheet anodes for lithium-ion batteries , 2007 .
[22] Serap Günes,et al. Nanoporous CuInS2 electrodes for hybrid solar cells , 2006, SPIE Photonics Europe.
[23] H. Katagiri. Cu2ZnSnS4 thin film solar cells , 2005 .
[24] M. A. Malik,et al. Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems , 2004 .
[25] Dieter Meissner,et al. Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .
[26] H. Sohn,et al. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries , 2002 .
[27] Kentaro Ito,et al. Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films , 1988 .
[28] Tayfun Gokmen,et al. Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .
[29] Yu‐Guo Guo,et al. Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .
[30] Ke Yang,et al. Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries , 2011 .
[31] Roar R. Søndergaard,et al. Advanced materials and processes for polymer solar cell devices , 2010 .