Colloidal CuZnSnSe4−xSx nanocrystals for hybrid solar cells

[1]  A. W. Hassel,et al.  Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆ , 2013, Electrochimica acta.

[2]  S. Adams,et al.  Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications , 2013 .

[3]  Jiwei Zhang,et al.  Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries , 2012 .

[4]  A. Pal,et al.  Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[5]  F. A. Pulgarin-Agudelo,et al.  Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. , 2012, Journal of the American Chemical Society.

[6]  Zhiqun Lin,et al.  Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[7]  Hongxia Wang Progress in Thin Film Solar Cells Based on , 2011 .

[8]  W. Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[9]  D. Ginley,et al.  Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.

[10]  P. Dale,et al.  A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers , 2010 .

[11]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[12]  M. Bouroushian Electrochemistry of Metal Chalcogenides , 2010 .

[13]  J. Yun,et al.  Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application , 2010 .

[14]  Helmut Neugebauer,et al.  Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications , 2010 .

[15]  J. Arbiol,et al.  Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.

[16]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[17]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[18]  Xuezhao Shi,et al.  Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material , 2009 .

[19]  Niyazi Serdar Sariciftci,et al.  Hybrid solar cells , 2008 .

[20]  S. Schorr Structural aspects of adamantine like multinary chalcogenides , 2007 .

[21]  Chunjoong Kim,et al.  Novel SnS2-nanosheet anodes for lithium-ion batteries , 2007 .

[22]  Serap Günes,et al.  Nanoporous CuInS2 electrodes for hybrid solar cells , 2006, SPIE Photonics Europe.

[23]  H. Katagiri Cu2ZnSnS4 thin film solar cells , 2005 .

[24]  M. A. Malik,et al.  Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems , 2004 .

[25]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[26]  H. Sohn,et al.  Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries , 2002 .

[27]  Kentaro Ito,et al.  Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films , 1988 .

[28]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[29]  Yu‐Guo Guo,et al.  Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .

[30]  Ke Yang,et al.  Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries , 2011 .

[31]  Roar R. Søndergaard,et al.  Advanced materials and processes for polymer solar cell devices , 2010 .