Normal Form Analysis of ℤ2-Equivariant Singularities

Singular parametric systems usually experience bifurcations when their parameters slightly vary around certain critical values, that is, surprising changes occur in their dynamics. The bifurcation ...

[1]  Bruno Buchberger,et al.  Gröbner Bases and Systems Theory , 2001, Multidimens. Syst. Signal Process..

[2]  M. Gazor,et al.  Normal forms of Hopf-zero singularity , 2012, 1210.4467.

[3]  Majid Gazor,et al.  Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case , 2013, 1304.7329.

[4]  Pei Yu,et al.  Formal Decomposition Method and Parametric Normal Forms , 2010, Int. J. Bifurc. Chaos.

[5]  E. Freire,et al.  Quasi-homogeneous normal forms , 2003 .

[6]  Pei Yu,et al.  The simplest normal form of Hopf bifurcation , 2003 .

[7]  Guanrong Chen,et al.  The simplest parametrized normal forms of Hopf and generalized Hopf bifurcations , 2007 .

[8]  P. Yu,et al.  Closed-Form Conditions of bifurcation Points for General Differential Equations , 2005, Int. J. Bifurc. Chaos.

[9]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[10]  Hans Grauert,et al.  Über die deformation isolierter singularitäten analytischer mengen , 1971 .

[11]  Emilio Freire,et al.  Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .

[12]  Rüdiger Gebauer,et al.  On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..

[13]  Yuan Yuan,et al.  A matching pursuit technique for computing the simplest normal forms of vector fields , 2003, J. Symb. Comput..

[14]  Pei Yu,et al.  Infinite Order Parametric Normal Form of Hopf Singularity , 2008, Int. J. Bifurc. Chaos.

[15]  Majid Gazor,et al.  Bifurcation Control and Universal Unfolding for Hopf-Zero Singularities with Leading Solenoidal Terms , 2014, SIAM J. Appl. Dyn. Syst..

[16]  Normal forms for Hopf-Zero singularities with nonconservative nonlinear part , 2013 .

[17]  Guanrong Chen,et al.  Computation of focus values with applications , 2008 .

[18]  Mahsa Kazemi,et al.  Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities , 2017, ACCA.

[19]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[20]  Pei Yu,et al.  Spectral sequences and parametric normal forms , 2011, 1103.3891.

[21]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[22]  Yuan Yuan,et al.  Computation of Simplest Normal Forms of differential equations associated with a Double-Zero Eigenvalue , 2001, Int. J. Bifurc. Chaos.