Normal Form Analysis of ℤ2-Equivariant Singularities
暂无分享,去创建一个
[1] Bruno Buchberger,et al. Gröbner Bases and Systems Theory , 2001, Multidimens. Syst. Signal Process..
[2] M. Gazor,et al. Normal forms of Hopf-zero singularity , 2012, 1210.4467.
[3] Majid Gazor,et al. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case , 2013, 1304.7329.
[4] Pei Yu,et al. Formal Decomposition Method and Parametric Normal Forms , 2010, Int. J. Bifurc. Chaos.
[5] E. Freire,et al. Quasi-homogeneous normal forms , 2003 .
[6] Pei Yu,et al. The simplest normal form of Hopf bifurcation , 2003 .
[7] Guanrong Chen,et al. The simplest parametrized normal forms of Hopf and generalized Hopf bifurcations , 2007 .
[8] P. Yu,et al. Closed-Form Conditions of bifurcation Points for General Differential Equations , 2005, Int. J. Bifurc. Chaos.
[9] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .
[10] Hans Grauert,et al. Über die deformation isolierter singularitäten analytischer mengen , 1971 .
[11] Emilio Freire,et al. Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .
[12] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[13] Yuan Yuan,et al. A matching pursuit technique for computing the simplest normal forms of vector fields , 2003, J. Symb. Comput..
[14] Pei Yu,et al. Infinite Order Parametric Normal Form of Hopf Singularity , 2008, Int. J. Bifurc. Chaos.
[15] Majid Gazor,et al. Bifurcation Control and Universal Unfolding for Hopf-Zero Singularities with Leading Solenoidal Terms , 2014, SIAM J. Appl. Dyn. Syst..
[16] Normal forms for Hopf-Zero singularities with nonconservative nonlinear part , 2013 .
[17] Guanrong Chen,et al. Computation of focus values with applications , 2008 .
[18] Mahsa Kazemi,et al. Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities , 2017, ACCA.
[19] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[20] Pei Yu,et al. Spectral sequences and parametric normal forms , 2011, 1103.3891.
[21] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[22] Yuan Yuan,et al. Computation of Simplest Normal Forms of differential equations associated with a Double-Zero Eigenvalue , 2001, Int. J. Bifurc. Chaos.