Multistep metal insulator transition in VO2 nanowires on Al2O3 (0001) substrates

We observed a temperature- and voltage-induced multistep metal-insulator transition (MIT) in vanadium dioxide nanowires fabricated on Al2O3 (0001) substrates. Nanowires with a width of 200 nm showed a multistep MIT that exhibited a resistivity change of nearly two orders of magnitude in a 0.5 K temperature step. These multistep resistivity jumps can be understood as a transition of a single domain, whose size is estimated to be around 50–70 nm from numerical calculation. We found that the temperature-induced isotropic conductive behavior of the nanowires becomes similar to the voltage-induced anisotropic one as their width decreases.

[1]  Binder,et al.  Finite-size effects at temperature-driven first-order transitions. , 1986, Physical review. B, Condensed matter.

[2]  John B. Goodenough,et al.  The two components of the crystallographic transition in VO2 , 1971 .

[3]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[4]  Hiroki R Ueda,et al.  Tuning metal-insulator transition by one dimensional alignment of giant electronic domains in artificially size-controlled epitaxial VO2 wires , 2012 .

[5]  J. Sethna,et al.  Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions. , 2010, Physical review letters.

[6]  Andrew M. Minor,et al.  Void formation induced electrical switching in phase-change nanowires. , 2008, Nano letters.

[7]  Marcelo Rozenberg,et al.  Universal Electric‐Field‐Driven Resistive Transition in Narrow‐Gap Mott Insulators , 2013, Advanced materials.

[8]  E. B. Shadrin,et al.  Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films , 2002 .

[9]  Ivan K Schuller,et al.  Role of thermal heating on the voltage induced insulator-metal transition in VO2. , 2013, Physical review letters.

[10]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[11]  Hidekazu Tanaka,et al.  Direct observation of giant metallic domain evolution driven by electric bias in VO2 thin films on TiO2(001) substrate , 2012 .

[12]  B. Kahng,et al.  Multilevel unipolar resistance switching in TiO2 thin films , 2009 .

[13]  Xuan Pan,et al.  Influence of defects on structural and electrical properties of VO2 thin films , 2011 .

[14]  Hiroki R Ueda,et al.  Manipulation of metal-insulator transition characteristics in aspect ratio-controlled VO2 micro-scale thin films on TiO2 (001) substrates , 2013 .

[15]  J. Straley Critical exponents for the conductivity of random resistor lattices , 1977 .

[16]  H. Drexler,et al.  The Pearson product‐moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms , 1993, Electrophoresis.

[17]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[18]  Ivan K Schuller,et al.  Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. , 2008, Physical review letters.

[19]  Hidekazu Tanaka,et al.  Metal-insulator transition with multiple micro-scaled avalanches in VO2 thin film on TiO2(001) substrates , 2012 .

[20]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[21]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .