Non-periodic finite-element formulation of orbital-free density functional theory

We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real-space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.

[1]  R. O. Jones,et al.  Density functional theory and molecular bonding. I. First‐row diatomic molecules , 1999 .

[2]  A. C. Wahl,et al.  Electronic Structure of Diatomic Molecules. III. A. Hartree—Fock Wavefunctions and Energy Quantities for N2(X1Σg+) and N2+(X2Σg+, A2Πu, B2Σu+) Molecular Ions , 1966 .

[3]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[4]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[5]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[6]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[7]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[8]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[9]  E. Clementi,et al.  ACCURATE ANALYTICAL SELF-CONSISTENT FIELD FUNCTIONS FOR ATOMS. II. LOWEST CONFIGURATIONS OF THE NEUTRAL FIRST ROW ATOMS , 1962 .

[10]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[12]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[13]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[14]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[15]  R. Ahlrichs,et al.  Clusters of Aluminum, a Density Functional Study. , 1999 .

[16]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[17]  Richard J. Needs,et al.  A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .

[18]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[19]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[20]  Efthimios Kaxiras,et al.  Kinetic energy density functionals for non-periodic systems , 2002 .

[21]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[22]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[23]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[24]  David R. Bowler,et al.  Recent progress with large‐scale ab initio calculations: the CONQUEST code , 2006 .

[25]  Cooper,et al.  Synthesis of band and model Hamiltonian theory for hybridizing cerium systems. , 1987, Physical review. B, Condensed matter.

[26]  Andrea Braides Γ-convergence for beginners , 2002 .

[27]  M. Newton Self‐Consistent Molecular‐Orbital Methods. II. Projection of Diatomic Differential Overlap (PDDO) , 1969 .

[28]  W. Huo Electronic Structure of CO and BF , 1965 .

[29]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[30]  Simon D. Elliott,et al.  Clusters of aluminium, a density functional study , 1999 .

[31]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[32]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[33]  B. Y. Tong,et al.  Application of a Self-Consistent Scheme Including Exchange and Correlation Effects to Atoms , 1966 .