Machine learning method to predict the interlayer sliding energy barrier of polarized MoS2 layers

[1]  T. Glatzel,et al.  Observation of robust superlubricity of MoS2 on Au(111) in ultrahigh vacuum , 2022, Applied Surface Science.

[2]  A. Tkatchenko,et al.  Anisotropic Interlayer Force Field for Transition Metal Dichalcogenides: The Case of Molybdenum Disulfide , 2021, Journal of chemical theory and computation.

[3]  Tong-Yi Zhang,et al.  Machine learning of phases and mechanical properties in complex concentrated alloys , 2021 .

[4]  Yanjing Su,et al.  A first-principles and machine learning combined method to investigate the interfacial friction between corrugated graphene , 2021 .

[5]  Jianbin Luo,et al.  Superlubricity between graphite layers in ultrahigh vacuum. , 2020, ACS applied materials & interfaces.

[6]  Lei Chen,et al.  Toward Robust Macroscale Superlubricity on Engineering Steel Substrate , 2020, Advanced materials.

[7]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[8]  B. Jonker,et al.  Atomic reconstruction and moir\'e patterns in transition metal dichalcogenide van der Waals heterostructures , 2019, 1911.12282.

[9]  S. Du,et al.  Modeling Atomic-Scale Electrical Contact Quality Across Two-Dimensional Interfaces. , 2019, Nano letters.

[10]  Mit H. Naik,et al.  Kolmogorov–Crespi Potential For Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices , 2019, The Journal of Physical Chemistry C.

[11]  Quanshui Zheng,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[12]  Jianbin Luo,et al.  Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips. , 2018, ACS nano.

[13]  Feng Lin,et al.  Machine Learning Directed Search for Ultraincompressible, Superhard Materials. , 2018, Journal of the American Chemical Society.

[14]  O. Hod,et al.  Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. , 2018, Nano letters.

[15]  Q. Xue,et al.  Superlubricity Enabled by Pressure-Induced Friction Collapse. , 2018, The journal of physical chemistry letters.

[16]  Hui Wang,et al.  Superlubricity of a graphene/MoS2 heterostructure: a combined experimental and DFT study. , 2017, Nanoscale.

[17]  Xianlong Wei,et al.  Superlubricity between MoS2 Monolayers , 2017, Advanced materials.

[18]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[19]  Jianbin Luo,et al.  Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study , 2014, Nanotechnology.

[20]  A. Goncharov,et al.  Pressure-induced metallization of molybdenum disulfide. , 2014, Physical review letters.

[21]  O. Hod The registry index: a quantitative measure of materials' interfacial commensurability. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  T. Ma,et al.  Ab Initio Study of the Friction Mechanism of Fluorographene and Graphane , 2013 .

[23]  E. Tosatti,et al.  Structure change, layer sliding, and metallization in high-pressure MoS 2 , 2013, 1301.0781.

[24]  T. Ma,et al.  Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene , 2012 .

[25]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[26]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[27]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[28]  M. Koyama,et al.  A computational chemistry study on friction of h-MoS(2). Part I. Mechanism of single sheet lubrication. , 2009, The journal of physical chemistry. B.

[29]  V. Crespi,et al.  Registry-dependent interlayer potential for graphitic systems , 2005 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[35]  S. Ross,et al.  Surface Oxidation of Molybdenum Disulfide , 1955 .