Dynamical versus variational symmetries: understanding Noether's first theorem

It is argued that awareness of the distinction between dynamical and variational symmetries is crucial to understanding the significance of Noether's 1918 work. Special attention is paid, by way of a number of striking examples, to Noether's first theorem, which establishes a correlation between dynamical symmetries and conservation principles.

[1]  J. Goldberg Conservation Laws in General Relativity , 1958 .

[2]  Harvey R. Brown,et al.  Symmetries and Noether's theorems , 2003 .

[3]  Sergio A. Hojman,et al.  A new conservation law constructed without using either Lagrangians or Hamiltonians , 1992 .

[4]  A. Trautman Conservation laws in general relativity , 1962 .

[5]  D. Wallace Time-dependent symmetries: the link between gauge symmetries and indeterminism , 2002 .

[6]  J. V. José,et al.  Classical Dynamics: A Contemporary Approach , 1998 .

[7]  Conservation Laws in Classical and Quantum Physics , 1954 .

[8]  E. L. Hill Hamilton's Principle and the Conservation Theorems of Mathematical Physics , 1951 .

[9]  Jorge V. José,et al.  Classical Dynamics: Contents , 1998 .

[10]  Peter G. Bergmann,et al.  Principles of Relativity Physics , 1967 .

[11]  B. Barbashov,et al.  Continuous Symmetries in Field Theory , 1983 .

[12]  J. Rice,et al.  Exact results with the J-integral applied to free-boundary flows , 2002, Journal of Fluid Mechanics.

[13]  G. Marmo,et al.  The inverse problem in the calculus of variations and the geometry of the tangent bundle , 1990 .

[14]  A. P. Parker Fundamentals of deformation and fracture: (Eshelby Memorial Symposium, Sheffield, 2–5 April 1984) edited by B.A. Bilby, K.J. Miller, J.R. Willis, Cambridge University Press, 1985. ISBN 0-521-26735-8, xxii + 630 pages, hard-cover, £45 , 1989 .

[15]  M. Tavel Milestones in mathematical physics Noether's theorem , 1971 .

[16]  K. Brading,et al.  Symmetries in physics: philosophical reflections , 2003, quant-ph/0301097.

[17]  Jorge V. José,et al.  Classical Dynamics: List of Worked Examples , 1998 .

[18]  A. Sudbery A vector Lagrangian for the electromagnetic field , 1986 .

[19]  C. W. Kilminster Gravitation—an Introduction to Current Research. Edited by Louis Witten. John Wiley & Sons, London. 1962. 481 pp. Illustrated. 113s. , 1963, The Journal of the Royal Aeronautical Society.

[20]  J. Earman Tracking down gauge: an ode to the constrained Hamiltonian formalism , 2003 .

[21]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[22]  E. Bessel-Hagen Über die Erhaltungssätze der Elektrodynamik , 1921 .

[23]  J. Rosen Noether's theorem in classical field theory , 1972 .

[24]  B. Vitale,et al.  On the Inversion of Noether's Theorem in Classical Dynamical Systems , 1972 .

[25]  J. Rice Conserved integrals and energetic forces , 1985 .

[26]  Simple applications of Noether’s first theorem in quantum mechanics and electromagnetism , 2003, quant-ph/0302062.