Monolithically Integrated RRAM- and CMOS-Based In-Memory Computing Optimizations for Efficient Deep Learning
暂无分享,去创建一个
Yandong Luo | Xiaoyu Sun | Shimeng Yu | Jae-Joon Kim | Jae-sun Seo | Shihui Yin | Yulhwa Kim | Xu Han | Hugh Barnaby | Wangxin He | H. Barnaby | Shimeng Yu | Jae-sun Seo | Shihui Yin | Yulhwa Kim | Xu Han | Yandong Luo | Wangxin He | Xiaoyu Sun | Jae-Joon Kim
[1] Onur Mutlu,et al. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[2] Yuan Xie,et al. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[3] Jae-sun Seo,et al. XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks , 2018, 2018 IEEE Symposium on VLSI Technology.
[4] Jason Cong,et al. Scaling for edge inference of deep neural networks , 2018 .
[5] Ryutaro Yasuhara,et al. A 4M Synapses integrated Analog ReRAM based 66.5 TOPS/W Neural-Network Processor with Cell Current Controlled Writing and Flexible Network Architecture , 2018, 2018 IEEE Symposium on VLSI Technology.
[6] Hossein Valavi,et al. A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain Compute , 2019, IEEE Journal of Solid-State Circuits.
[7] Meng-Fan Chang,et al. 24.5 A Twin-8T SRAM Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).
[8] Meng-Fan Chang,et al. 24.1 A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge Processors , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).