Observing plant roots in their environment: current imaging options and specific contribution of two-dimensional approaches

Observation des racines dans leur environnement: techniques d'imagerie actuelles et apports specifiques des approches 2D. Cet article offre un inventaire des techniques d'imagerie actuellement disponibles pour l'observation des racines au sein de leur environnement. Le propos est avant tout d'informer le lecteur sur le potentiel et les limites des techniques et non sur leurs principes physiques. D'autre part, l'accent est mis sur l'apport specifique des methodes 2D: en depit des limitations et biais qui leur sont inherents, ces methodes offrent en effet, par rapport aux outils 3D actuellement disponibles, des avantages tels qu'un grand champ d'observation ou une resolution superieure a champ d'observation equivalent, ou encore, une mise en oeuvre simplifiee et un cout reduit. Ainsi, la microscopie et la radiographie X a haute resolution sont tres attractives car elles permettent d'etudier. a une echelle qui demeure hors de la portee des methodes 3D. les interactions complexes entre racines et structure du sol. On montre par ailleurs que les methodes 2D basees sur l'attenuation de lumiere visible ou de rayons X s'averent tres utiles pour etudier le fonctionnement de systemes racinaires entiers en rhizotrons. S'il ne fait guere de doute qu'a relativement court terme. les progres accomplis dans le domaine de l'imagerie 3D aboutiront a la mise au point d'outils parfaitement adaptes a l'observation non destructive des racines dans leur environnement, il n'en reste pas moins que, dans l'attente de tels outils, les techniques 2D continueront de faire progresser notre connaissance des racines et de leur fonctionnement.

[1]  S. A. Barber,et al.  Autoradio-graphic evidence for the differential effect of four plant species in altering the calcium content of the rhizosphere soil. , 1970 .

[2]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[3]  J. B. Passioura,et al.  Soil structure and plant growth: Impact of bulk density and biopores , 1996, Plant and Soil.

[4]  L. Aylmore Use of Computer-Assisted Tomography in Studying Water Movement Around Plant Roots , 1993 .

[5]  J. Hopmans,et al.  Three dimensional imaging of plant roots in situ with X-ray Computed Tomography , 1997, Plant and Soil.

[6]  Graham Aylmore Tomography of Soil-Water-Root Processes , 1994 .

[7]  J. Devereux Joslin,et al.  Disturbances During Minirhizotron Installation Can Affect Root Observation Data , 1999 .

[8]  R. Horn,et al.  Uniform Separation of Concentric Surface Layers from Soil Aggregates , 1997 .

[9]  P. Bottomley,et al.  In situ nuclear magnetic resonance imaging of roots: influence of soil type, ferromagnetic particle content, and soil water , 1987 .

[10]  M. Mccully Water efflux from the surface of field‐grown grass roots. Observations by cryo‐scanning electron microscopy , 1995 .

[11]  A. Haase,et al.  Measurement of Water Flow in the Xylem Vessels of Intact Maize Plants using Flow‐Sensitive NMR Imaging , 1996 .

[12]  L. Aylmore,et al.  The use of computer-assisted tomography to determine spatial distribution of soil water content , 1983 .

[13]  H. Gundersen,et al.  Non-destructive, stereological estimation of plant root lengths, branching pattern and diameter distribution , 1999, Plant and Soil.

[14]  G. Johnson,et al.  Use of Magnetic Resonance Imaging in the Study of Plants and Soils , 1994 .

[15]  M. Goulard,et al.  Investigations on distribution patterns in soil: basic and relative distributions of roots, channels and cracks , 1993 .

[16]  Brent Clothier,et al.  ROOTS: THE BIG MOVERS OF WATER AND CHEMICAL IN SOIL , 1997 .

[17]  Peter J. Gregory,et al.  New approaches to studying chemical and physical changes in the rhizosphere: an overview , 1999, Plant and Soil.

[18]  Walter J. Horst,et al.  Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants , 1986 .

[19]  M. Mccully,et al.  ROOTS IN SOIL: Unearthing the Complexities of Roots and Their Rhizospheres. , 1999, Annual review of plant physiology and plant molecular biology.

[20]  J. Passioura,et al.  Soil structure and plant growth , 1991 .

[21]  M. Watt,et al.  Formation and Stabilization of Rhizosheaths of Zea mays L. (Effect of Soil Water Content) , 1994, Plant physiology.

[22]  D. A. Heeraman,et al.  A comparison of minirhizotron, core and monolith methods for quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution , 2004, Plant and Soil.

[23]  R. Zobel,et al.  Differential Genotypic and Root Type Penetration of Compacted Soil Layers , 1998 .

[24]  B. Jaillard,et al.  pH mapping in transparent gel using color indicator videodensitometry , 1996, Plant and Soil.

[25]  Peter J. Gregory,et al.  Sieve size effects on root length and biomass measurements of maize (Zea mays) and Grevillea robusta , 1999, Plant and Soil.

[26]  M. van Noordwijk,et al.  Roots, plant production and nutrient use efficiency , 1987 .

[27]  Tammo S. Steenhuis,et al.  Visualization by light transmission of oil and water contents in transient two-phase flow fields , 1998 .

[28]  M. Noordwijk,et al.  Root—soil contact of field-grown winter wheat , 1993 .

[29]  Loïc Pagès,et al.  Tracing root development using the soft X-ray radiographic method, as applied to young cuttings of western red cedar (Thuja plicata) , 1999 .

[30]  C. Moran,et al.  Macropore sheath: quantification of plant root and soil macropore association , 2004, Plant and Soil.

[31]  L. Aylmore,et al.  Soil solute concentration and water uptake by single lupin and radish plant roots , 1992, Plant and Soil.

[32]  Richard A. Jones,et al.  NMR imaging of roots: methods for reducing the soil signal and for obtaining a 3-dimensional description of the roots , 1992 .

[33]  Reyer Zwiggelaar,et al.  The Detection of “Soft” Materials by Selective Energy Xray Transmission Imaging and Computer Tomography , 1997 .

[34]  C. Moran,et al.  High-Resolution Bulk Density Images, Using Calibrated X-ray Radiography of Impregnated Soil Slices , 1998 .

[35]  Vincent C. Tidwell,et al.  X ray and visible light transmission for laboratory measurement of two‐dimensional saturation fields in thin‐slab systems , 1994 .

[36]  C. Moran,et al.  X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure , 2004, Plant and Soil.

[37]  L. Aylmore,et al.  Water extraction by single plant roots , 1986 .

[38]  B. Nicoullaud,et al.  Backscattered electron scanning images of soil porosity for analyzing soil compaction around roots , 1996 .

[39]  S. Anderson,et al.  Studies of soil water drawdowns by single radish roots at decreasing soil water content using computer-assisted tomography , 2001 .

[40]  K. Barley,et al.  The Effects of Mechanical Stress on the Growth of Roots , 1962 .

[41]  J. Macfall,et al.  Computer-Assisted Tomography and Magnetic Resonance Imaging , 2000 .

[42]  J. Passioura Roots and Water Economy of Wheat , 1985 .

[43]  S. Scheu,et al.  Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae) , 1999 .

[44]  M. Noordwijk,et al.  Root-soil contact of maize, as measured by a thin-section technique , 2004, Plant and Soil.

[45]  L. Pagès,et al.  Evaluation in field conditions of a three-dimensional architectural model of the maize root system: Comparison of simulated and observed horizontal root maps , 2004, Plant and Soil.

[46]  C. Vaz,et al.  X-ray microtomography to investigate thin layers of soil clod , 1998 .