Large-area high-quality 2D ultrathin Mo2C superconducting crystals.

[1]  J. Kosterlitz Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181–203)—the early basis of the successful Kosterlitz–Thouless theory , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Yury Gogotsi,et al.  Mxenes: A New Family of Two-Dimensional Materials and Its Application As Electrodes for Li and Na-Ion Batteries , 2015 .

[3]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[4]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[5]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[6]  K. T. Law,et al.  Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure , 2013, Nature Communications.

[7]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[8]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[9]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[10]  V. Bouchiat,et al.  Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids. , 2011, Nature materials.

[11]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[12]  V. L. Berezinskit DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .

[13]  H. Hwang,et al.  Two-dimensional normal-state quantum oscillations in a superconducting heterostructure , 2009, Nature.

[14]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[15]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[16]  T. Schneider,et al.  Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface , 2009 .

[17]  Feng Li,et al.  Total color difference for rapid and accurate identification of graphene. , 2008, ACS nano.

[18]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[19]  M I Katsnelson,et al.  Strong suppression of weak localization in graphene. , 2006, Physical review letters.

[20]  J. Seiber Status and Prospects , 2005 .

[21]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[22]  B. Johansson,et al.  Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study - art. no. 134108 , 2001 .

[23]  S. Oyama,et al.  The Chemistry of Transition Metal Carbides and Nitrides , 1996 .

[24]  S. Oyama Introduction to the chemistry of transition metal carbides and nitrides , 1996 .

[25]  G. Bergmann Weak Localization in Thin Films , 1986 .

[26]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[27]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[28]  David R. Nelson,et al.  Resistive transition in superconducting films , 1979 .

[29]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[30]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[31]  B. W. James,et al.  Superconductivity of molybdenum and tungsten carbides , 1971 .

[32]  L. Toth Transition Metal Carbides and Nitrides , 1971 .

[33]  B. Matthias,et al.  Superconductivity of the transition-metal carbides , 1967 .

[34]  Edwin Parthe,et al.  The structure of dimolybdenum carbide by neutron diffraction technique , 1963 .

[35]  B. Matthias,et al.  A Search for New Superconducting Compounds , 1952 .