The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of TiO2 xerogel composite film

Abstract A simple sol–gel method was applied for the synthesis of 0.01 wt% multiwalled carbon nanotubes (MWCNTs)-doped TiO2 xerogel composite film. The film's CO gas sensing properties were then evaluated. Doped MWCNTs were coated with TiO2 and distributed on a TiO2 xerogel matrix. The TiO2 xerogel showed an anatase structure after heat treatment at 450 °C under vacuum. The specific surface area of the composite material was larger than the pure TiO2 xerogel material. The CO gas sensitivity of the MWCNTs(0.01 wt%)-doped TiO2 xerogel composite film was found to be seven times higher than that of pure TiO2 xerogel film and to have good stability. This higher gas-sensing property of the composite film was due to both an increase of specific surface area and the n–p junction structure of the TiO2 xerogel coated on MWCNTs. The electrons generated from TiO2 after adsorption of CO gas induces electron transfer from the TiO2 to the MWCNTs. This induces a characteristic change in the MWCNTs from p-type to n-type, and the resistance of MWCNTs-doped TiO2 xerogel composite sensor is therefore decreased.

[1]  S. Iannotta,et al.  Innovative aspects in thin film technologies for nanostructured materials in gas sensor devices , 2003 .

[2]  J. V. Grahn,et al.  In situ growth of evaporated TiO2 thin films using oxygen radicals: Effect of deposition temperature , 1998 .

[3]  Laszlo B. Kish,et al.  Semiconductor gas sensors based on nanostructured tungsten oxide , 2001 .

[4]  A. S. Zuruzi,et al.  Highly sensitive gas sensor based on integrated titania nanosponge arrays , 2006 .

[5]  H. Chu,et al.  Structure and CO gas sensing properties of electrospun TiO2 nanofibers , 2010 .

[6]  M. J. Brett,et al.  Response time of nanostructured relative humidity sensors , 2009 .

[7]  N. Cioffi,et al.  Nano-Antimicrobials: Progress and Prospects , 2012 .

[8]  Johannes Boneberg,et al.  Colloid monolayer lithography : a flexible approach for nanostructuring of surfaces , 1999 .

[9]  Weon-Pil Tai,et al.  Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films , 2002 .

[10]  Giorgio Sberveglieri,et al.  TiO2 thin films by a novel sol–gel processing for gas sensor applications , 2000 .

[11]  Craig A. Grimes,et al.  Encyclopedia of Sensors , 2006 .

[12]  Lu Shen,et al.  Preparation and mechanical properties of chitosan/carbon nanotubes composites. , 2005, Biomacromolecules.

[13]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[14]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[15]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[16]  L. Chow,et al.  Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing , 2008 .

[17]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[18]  Il-Doo Kim,et al.  Macroporous TiO2 thin film gas sensors obtained using colloidal templates , 2008 .

[19]  Hongtao Yu,et al.  TiO2−Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability , 2007 .

[20]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .

[21]  Johannes Boneberg,et al.  Colloid Monolayers as Versatile Lithographic Masks , 1997 .

[22]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[23]  Luca Francioso,et al.  TiO2 nanowires array fabrication and gas sensing properties , 2008 .

[24]  Automatically aligned electron beam lithography on the nanometre scale , 1999 .

[25]  T. Chou,et al.  Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing , 2006 .

[26]  C. Brinker Sol-gel science , 1990 .

[27]  Zhi Chen,et al.  High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide , 2009 .

[28]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[29]  M. Buongiorno Nardelli,et al.  Carbon nanotube-metal cluster composites: a new road to chemical sensors? , 2005, Nano letters.