Effects of calcium ions on phospholipid aggregates at subzero temperatures

[1]  R. Jasinská,et al.  Transport and decarboxylation of liposomal phosphatidylserine: effect of cations. , 1992, Biochimica et biophysica acta.

[2]  W. Wu,et al.  Freezing of phosphocholine headgroup in fully hydrated sphingomyelin bilayers and its effect on the dynamics of nonfreezable water at subzero temperatures. , 1991, The Journal of biological chemistry.

[3]  D. Marsh,et al.  Analysis of the chainlength dependence of lipid phase transition temperatures: main and pretransitions of phosphatidylcholines; main and non-lamellar transitions of phosphatidylethanolamines. , 1991, Biochimica et biophysica acta.

[4]  G. Feigenson,et al.  Thermodynamics of mixing of phosphatidylserine/phosphatidylcholine from measurements of high-affinity calcium binding. , 1990, Biochemistry.

[5]  C. Huang,et al.  Differential scanning calorimetry study of mixed-chain phosphatidylcholines with a common molecular weight identical with diheptadecanoylphosphatidylcholine. , 1990, Biochemistry.

[6]  J. Silvius Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids. , 1990, Biochemistry.

[7]  M. Lösche,et al.  Electrostatic interactions in phospholipid membranes: II. Influence of divalent ions on monolayer structure , 1989 .

[8]  E. Wachtel,et al.  Thermotropic properties of mixtures of negatively charged phospholipids with cholesterol in the presence and absence of Li+ or Ca2+ ions. , 1989, Biochimica et biophysica acta.

[9]  J. Marra Direct measurement of the interaction between phosphatidylglycerol bilayers in aqueous electrolyte solutions. , 1986, Biophysical journal.

[10]  J. Israelachvili,et al.  Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. , 1985, Biochemistry.

[11]  H. Ohshima,et al.  Effects of divalent cations on the surface tension of a lipid monolayer-coated air/water interface , 1985 .

[12]  H. Mantsch,et al.  The thermotropic phase behavior of N-methylated dipalmitoylphosphatidylethanolamines , 1983 .

[13]  M. Gaestel,et al.  Lateral lipid distribution and phase transition in phosphatidylethanolamine/phosphatidylserine vesicles. A cross-linking study. , 1983, Biochimica et biophysica acta.

[14]  D. Papahadjopoulos,et al.  Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. , 1981, Biochimica et biophysica acta.

[15]  S. McLaughlin,et al.  The adsorption of divalent cations to phosphatidylglycerol bilayer membranes. , 1981, Biochimica et biophysica acta.

[16]  H. Ohshima,et al.  A theory of the effects of calcium ions on the lamellar phase of dipalmitoyl lecithin , 1978 .

[17]  K. Jacobson,et al.  Studies on membrane fusion. III. The role of calcium-induced phase changes. , 1977, Biochimica et biophysica acta.

[18]  D. Papahadjopoulos Effects of Bivalent Cations and Proteins on Thermotropic Properties of Phospholipid Membranes: Implications for the Molecular Mechanism of Fusion and Endocytosis , 1977 .

[19]  D. Papahadjopoulos,et al.  Effects of proteins on thermotropic phase transitions of phospholipid membranes. , 1975, Biochimica et biophysica acta.

[20]  T. Healy,et al.  Specific cation effects on water structure at the air-water and air-octadecanol monolayer-water interfaces , 1973 .

[21]  D. Shah,et al.  BINDING OF METAL IONS TO MONOLAYERS OF LECITHINS, PLASMALOGEN, CARDIOLIPIN, AND DICETYL PHOSPHATE. , 1965, Journal of lipid research.