Gating currents and charge movements in excitable membranes.

[1]  A. Hodgkin,et al.  Internal recording of the early receptor potential in turtle cones. , 1977, The Journal of physiology.

[2]  D. Rosen Dielectric properties of protein powders with adsorbed water , 1963 .

[3]  R. Keynes,et al.  Characteristics of the sodium gating current in the squid giant axon. , 1973, The Journal of physiology.

[4]  F. Bezanilla,et al.  Kinetic properties and inactivation of the gating currents of sodium channels in squid axon. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  W. Almers,et al.  Interaction between a local anesthetic, the sodium channel gates and tetrodotoxin (TTX) , 1977 .

[6]  Francisco Bezanilla,et al.  Charge Movement Associated with the Opening and Closing of the Activation Gates of the Na Channels , 1974, The Journal of general physiology.

[7]  H. Weber Medium Energy Inelastic Hadron Scattering and Nuclear Structure , 1976 .

[8]  B. Hille Gating in sodium channels of nerve. , 1976, Annual review of physiology.

[9]  G. Schwarz Dielectric relaxation due to chemical rate processes , 1967 .

[10]  F. Blatt Gating currents: the role of nonlinear capacitative currents of electrostrictive origin. , 1977, Biophysical journal.

[11]  F Bezanilla,et al.  Inactivation of the sodium channel. II. Gating current experiments , 1977, The Journal of general physiology.

[12]  S. Takashima,et al.  Dielectric behavior of biological macromolecules , 1974 .

[13]  J. M. Ritchie,et al.  A new method for labelling saxitoxin and its binding to non‐myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves. , 1976, The Journal of physiology.

[14]  D. Haydon,et al.  Polar group orientation and the electrical properties of lecithin bimolecular leaflets. , 1965, Journal of theoretical biology.

[15]  Lee D. Peachey,et al.  THE SARCOPLASMIC RETICULUM AND TRANSVERSE TUBULES OF THE FROG'S SARTORIUS , 1965, The Journal of cell biology.

[16]  B A Mobley,et al.  Sizes of components in frog skeletal muscle measured by methods of stereology , 1975, The Journal of general physiology.

[17]  B. Hille,et al.  Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. , 1977, Biophysical journal.

[18]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[19]  W. Ulbricht Ionic channels and gating currents in excitable membranes. , 1977, Annual review of biophysics and bioengineering.

[20]  B. Hille,et al.  Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction , 1977, The Journal of general physiology.

[21]  W. Almers Differential effects of tetracaine on delayed potassium channels and displacement currents in frog skeletal muscle. , 1976, The Journal of physiology.

[22]  O. Andersen,et al.  Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. , 1975, Biophysical journal.

[23]  O. Krishtal,et al.  Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride , 1977, Nature.

[24]  G. Ehrenstein,et al.  Slow changes of potassium permeability in the squid giant axon. , 1966, Biophysical journal.

[25]  K. Cole Electrical properties of the squid axon sheath. , 1976, Biophysical journal.

[26]  B. Hille The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. , 1975, Biophysical journal.

[27]  W. Almers,et al.  Tetrodotoxin binding to normal depolarized frog muscle and the conductance of a single sodium channel. , 1975, The Journal of physiology.

[28]  Ritchie Jm,et al.  The binding of labelled saxitoxin to normal and denervated muscle [proceedings]. , 1976 .

[29]  H. Glitsch,et al.  Membrane physiology of nerve and muscle fibres. , 1976, Fortschritte der Zoologie.

[30]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[31]  R. H. Adrian,et al.  Charge movement in the membrane of striated muscle. , 1978, Annual review of biophysics and bioengineering.

[32]  P. Seeman,et al.  The membrane actions of anesthetics and tranquilizers. , 1972, Pharmacological reviews.

[33]  T. Narahashi,et al.  Removal of sodium channel inactivation in squid axon membranes by n bromoacetamide , 1976 .

[34]  H. Oetliker,et al.  The optical properties of birefringence signals from single muscle fibres. , 1977, The Journal of physiology.

[35]  G. Strichartz,et al.  The Inhibition of Sodium Currents in Myelinated Nerve by Quaternary Derivatives of Lidocaine , 1973, The Journal of general physiology.

[36]  K L Magleby,et al.  A quantitative description of end‐plate currents , 1972, The Journal of physiology.

[37]  K. Courtney Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. , 1975, The Journal of pharmacology and experimental therapeutics.

[38]  W. Chandler,et al.  Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution , 1970, The Journal of physiology.

[39]  R. Yantorno,et al.  Electrical properties of squid axon membrane. II. Effect of partial degradation by phospholipase A and pronase on electrical characteristics. , 1975, Biochimica et biophysica acta.

[40]  R. H. Adrian,et al.  Membrane capacity measurements on frog skeletal muscle in media of low ion content. With an Appendix , 1974, The Journal of physiology.

[41]  E. Rojas,et al.  Gating currents in the node of Ranvier: voltage and time dependence. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  W. Chandler,et al.  Sodium and potassium currents in squid axons perfused with fluoride solutions , 1970, The Journal of physiology.

[43]  A. Hodgkin,et al.  The effect of diameter on the electrical constants of frog skeletal muscle fibres , 1972 .

[44]  R. Keynes,et al.  The temporal and steady‐state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. , 1976, The Journal of physiology.

[45]  H. Meves The effect of holding potential on the asymmetry currents in squid giant axons , 1974, The Journal of physiology.

[46]  A. Hodgkin The optimum density of sodium channels in an unmyelinated nerve. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  W. Chandler,et al.  Voltage clamp experiments on internally perfused giant axons. , 1965, The Journal of physiology.

[48]  T. Tiffert,et al.  Ionized calcium concentrations in squid axons , 1976, The Journal of general physiology.

[49]  M. Murakami,et al.  A New Receptor Potential of the Monkey Retina with no Detectable Latency , 1964, Nature.

[50]  F. Bezanilla,et al.  Destruction of Sodium Conductance Inactivation in Squid Axons Perfused with Pronase , 1973, The Journal of general physiology.

[51]  B. Hille Pharmacological Modifications of the Sodium Channels of Frog Nerve , 1968, The Journal of general physiology.

[52]  E. Jaimovich,et al.  Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle , 1976, The Journal of general physiology.

[53]  T. Begenisich,et al.  Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons , 1974, The Journal of general physiology.

[54]  C. Caputo The time course of potassium contracture of single muscle fibres , 1972, The Journal of physiology.

[55]  R. Benz,et al.  Electrical capacity of black lipid films and of lipid bilayers made from monolayers. , 1975, Biochimica et biophysica acta.

[56]  R. Keynes,et al.  Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon , 1974, The Journal of physiology.

[57]  P. H. Barry,et al.  Differential effects of glycerol treatment on membrane capacity and excitation—contraction coupling in toad sartorius fibres. With an Appendix , 1973, The Journal of physiology.

[58]  R. H. Adrian,et al.  A gating signal for the potassium channel? , 1977, Nature.

[59]  J. M. Ritchie,et al.  Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Eisenberg,et al.  Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system. , 1977, Biophysical journal.

[61]  J. Yeh,et al.  Observations of sodium channel activation gating in squid axons internally perfused with pronase or N bromoacetamide , 1977 .

[62]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion. , 1974, Biochimica et biophysica acta.

[63]  G. Camejo,et al.  Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. , 1969, Biochimica et biophysica acta.

[64]  R. Keynes,et al.  Analysis of the potential‐dependent changes in optical retardation in the squid giant axon , 1971, The Journal of physiology.

[65]  H. Coster,et al.  Anomalous dielectric dispersion in bimolecular lipid membranes. , 1970, Biochimica et biophysica acta.

[66]  W. Almers Observations on intramembrane charge movements in skeletal muscle. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  P. Gage,et al.  Gating currents associated with sodium and calcium currents in an Aplysia neuron. , 1976, Science.

[68]  W. Ulbricht,et al.  The influence of pH on equilibrium effects of tetrodotoxin on myelinated nerve fibres of Rana esculenta. , 1975, The Journal of physiology.

[69]  L. Goldman Kinetics of Channel Gating in Excitable Membranes , 1976, Quarterly Reviews of Biophysics.

[70]  R. Quinn,et al.  Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. , 1978, Science.

[71]  M. F. Schneider,et al.  Increased optical transparency associated with excitation–contraction coupling in voltage-clamped cut skeletal muscle fibres , 1977, Nature.

[72]  H. Oetliker,et al.  The action of caffeine on the activation of the contractile mechanism in striated muscle fibres , 1968, The Journal of physiology.

[73]  F. Bezanilla,et al.  Gating Currents of the Sodium Channels: Three Ways to Block Them , 1974, Science.

[74]  H. Oetliker,et al.  Birefringence signals from surface and t‐system membranes of frog single muscle fibres. , 1977, The Journal of physiology.

[75]  M. Westerfield,et al.  An octopus toxin, maculotoxin, selectively blocks sodium current in squid axons. , 1976, The Journal of physiology.

[76]  R. H. Adrian,et al.  The voltage dependence of membrane capacity. , 1976, The Journal of physiology.

[77]  F. Bezanilla,et al.  Properties of the sodium channel gating current. , 1976, Cold Spring Harbor symposia on quantitative biology.

[78]  H. Meves The effect of zinc on the late displacement current in squid giant axons. , 1976, The Journal of physiology.

[79]  Clara Franzini-Armstrong,et al.  STUDIES OF THE TRIAD I. Structure of the Junction in Frog Twitch Fibers , 1970 .

[80]  R. E. Taylor Impedance of the squid axon membrane , 1965 .

[81]  H. Oetliker,et al.  A large birefringence signal preceding contraction in single twitch fibres of the frog. , 1977, The Journal of physiology.

[82]  A. Hodgkin,et al.  Analysis of the membrane capacity in frog muscle , 1972, The Journal of physiology.

[83]  The Molecular Organisation of the Sodium Channels in Nerve , 1977 .

[84]  I. Spector,et al.  Membrane currents examined under voltage clamp in cultured neuroblastoma cells. , 1977, Science.

[85]  Kryshtal' Oa,et al.  Displacement currents associated with activation of the gating mechanism of calcium channels in nerve cell membranes , 1976 .

[86]  W. Almers,et al.  Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. , 1976, The Journal of physiology.

[87]  P. Stanfield The effect of the tetraethylammonium ion on the delayed currents of frog skeletal muscle , 1970, The Journal of physiology.

[88]  R. Kornberg,et al.  Inside-outside transitions of phospholipids in vesicle membranes. , 1971, Biochemistry.

[89]  R. H. Adrian,et al.  Voltage clamp experiments in striated muscle fibres , 1970, The Journal of physiology.

[90]  R. Keynes,et al.  On the relation between displacement currents and activation of the sodium conductance in the squid giant axon. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  Kenneth S. Cole,et al.  TRANSVERSE ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON , 1938, The Journal of general physiology.

[92]  S. R. Taylor,et al.  Calcium transients in amphibian muscle. , 1975, Federation proceedings.

[93]  W. Chandler,et al.  A non‐linear voltage dependent charge movement in frog skeletal muscle. , 1976, The Journal of physiology.

[94]  R. FitzHugh,et al.  Voltage and current clamp transients with membrane dielectric loss. , 1973, Biophysical journal.

[95]  H. Hinkelmann E. E. Bittar (Editor), Membranes and Ion Transport, Vol. II. 293 S., 41 Abb., 20 Tab. London – New York – Sidney – Toronto 1970: Wiley Interscience, John Wiley & Sons 110s , 1971 .

[96]  D. Wobschall Voltage dependence of bilayer membrane capacitance , 1972 .

[97]  R. Eisenberg,et al.  SELECTIVE DISRUPTION OF THE SARCOTUBULAR SYSTEM IN FROG SARTORIUS MUSCLE , 1968, The Journal of cell biology.

[98]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[99]  M. Nirenberg,et al.  Use of aminopterin in selecting electrically active neuroblastoma cells , 1972 .

[100]  P. Stanfield The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. , 1975, The Journal of physiology.

[101]  E Wanke,et al.  Potassium and sodium ion current noise in the membrane of the squid giant axon. , 1975, The Journal of physiology.

[102]  C. Caputo The effect of low temperature on the excitation‐contraction coupling phenomena of frog single muscle fibres , 1972, The Journal of physiology.

[103]  R. H. Adrian,et al.  The kinetics of mechanical activation in frog muscle , 1969, The Journal of physiology.

[104]  G. Falk,et al.  Linear electrical properties of striated muscle fibres observed with intracellular electrodes , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[105]  K. Cole Resistivity of axoplasm. I. Resistivity of extruded squid axoplasm , 1975, The Journal of general physiology.

[106]  W. Chandler,et al.  Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction Coupling , 1973, Nature.

[107]  D. Haydon,et al.  An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[108]  B. Hille,et al.  An improved vaseline gap voltage clamp for skeletal muscle fibers , 1976, The Journal of general physiology.

[109]  C. Armstrong,et al.  Ionic pores, gates, and gating currents , 1974, Quarterly Reviews of Biophysics.

[110]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[111]  F. Gurd,et al.  Complex formation between metallic cations and proteins, peptides and amino acids. , 1956, Advances in protein chemistry.

[112]  F Bezanilla,et al.  Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A. , 1975, The Journal of physiology.

[113]  C. Stevens,et al.  How many conductance states do potassium channels have? , 1975, Biophysical journal.

[114]  H. Lécuyer,et al.  Structure of aqueous mixtures of lecithin and cholesterol. , 1969, Journal of molecular biology.

[115]  D. Haydon FUNCTIONS OF THE LIPID IN BILAYER ION PERMEABILITY , 1975, Annals of the New York Academy of Sciences.

[116]  D. Noble,et al.  The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres , 1968, The Journal of physiology.

[117]  L. Costantin,et al.  Contractile Activation in Frog Skeletal Muscle , 1974, The Journal of general physiology.

[118]  Martin F. Schneider,et al.  Linear Electrical Properties of the Transverse Tubules and Surface Membrane of Skeletal Muscle Fibers , 1970, The Journal of general physiology.

[119]  C M Armstrong,et al.  Inactivation of the Potassium Conductance and Related Phenomena Caused by Quaternary Ammonium Ion Injection in Squid Axons , 1969, The Journal of general physiology.

[120]  B. Rudy Sodium gating currents in Myxicola giant axons , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[121]  F. Bezanilla,et al.  CURRENTS ASSOCIATED WITH THE IONIC GATING STRUCTURES IN NERVE MEMBRANE fn1 , 1975, Annals of the New York Academy of Sciences.

[122]  R. Eisenberg,et al.  Impedance of Frog Skeletal Muscle Fibers in Various Solutions , 1974, The Journal of general physiology.

[123]  W. Almers Local anesthetics and excitation-contraction coupling in skeletal muscle. Effects on a Ca++-channel [proceedings]. , 1977, Biophysical journal.

[124]  A. M. Gordon,et al.  Tension in Skinned Frog Muscle Fibers in Solutions of Varying Ionic Strength and Neutral Salt Composition , 1973, The Journal of general physiology.

[125]  H. Meves,et al.  Inactivation of the asymmetrical displacement current in giant axons of Loligo forbesi. , 1977, The Journal of physiology.

[126]  A. Hodgkin,et al.  Potassium contractures in single muscle fibres , 1960, The Journal of physiology.

[127]  The rate of action of tetrodotoxin on sodium conductance in the squid giant axon. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[128]  W. Chandler,et al.  Time-course of potential spread along a skeletal muscle fiber under voltage clamp , 1976, The Journal of general physiology.

[129]  R. H. Adrian,et al.  Charge movement and mechanical repriming in skeletal muscle. , 1976, The Journal of physiology.

[130]  C. Hunt,et al.  The relation of membrane changes to contraction in twitch muscle fibres , 1969, The Journal of physiology.

[131]  A. Babakov,et al.  Influence of Electric Field on the Capacity of Phospholipid Membranes , 1966, Nature.

[132]  H. Meves,et al.  Slow recovery of sodium current and 'gating current' from inactivation. , 1977, The Journal of physiology.

[133]  M. Murakami,et al.  Intracellularly recorded early receptor potential of the vertebrate photoreceptors. , 1970, Vision research.

[134]  R. Cole Relaxation processes in dielectrics , 1965 .

[135]  W. Chandler,et al.  Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity , 1975, Nature.

[136]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[137]  W. Chandler,et al.  Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. , 1976, The Journal of physiology.

[138]  R. H. Adrian,et al.  Conduction velocity and gating current in the squid giant axon , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[139]  D. Haydon,et al.  Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces , 1970 .

[140]  A. Hodgkin,et al.  The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. , 1965, The Journal of physiology.

[141]  B. Hille The pH-dependent rate of action of local anesthetics on the node of Ranvier , 1977, The Journal of general physiology.

[142]  S. White Temperature-dependent structural changes in planar bilayer membranes: solvent "freeze-out". , 1974, Biochimica et biophysica acta.

[143]  F. Conti,et al.  Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. , 1976, The Journal of physiology.

[144]  S. Chiu Inactivation of sodium channels: second order kinetics in myelinated nerve , 1977, The Journal of physiology.

[145]  L. Goldman,et al.  Inactivation of the Sodium Current in Myxicola Giant Axons , 1972, The Journal of general physiology.

[146]  S. Levinson,et al.  The binding of tritiated tetrodotoxin to squid giant axons. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[147]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[148]  C. Armstrong Time Course of TEA+-Induced Anomalous Rectification in Squid Giant Axons , 1966, The Journal of general physiology.

[149]  H P Schwan,et al.  Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. , 1965, The Journal of physical chemistry.

[150]  A. Hodgkin,et al.  Measurement of current‐voltage relations in the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[151]  W. Chandler,et al.  Effects of membrane potential on the capacitance of skeletal muscle fibers , 1976, The Journal of general physiology.

[152]  F. Bezanilla,et al.  Currents Related to Movement of the Gating Particles of the Sodium Channels , 1973, Nature.

[153]  R. Miledi,et al.  Measurement of calcium transients in frog muscle by the use of arsenazo III , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[154]  L. Goldman,et al.  Quantitative Description of Sodium and Potassium Currents and Computed Action Potentials in Myxicola Giant Axons , 1973, The Journal of general physiology.

[155]  E. Rojas Gating mechanism for the activation of the sodium conductance in nerve membranes. , 1976, Cold Spring Harbor symposia on quantitative biology.

[156]  T. L. Hill,et al.  On the theory of ion transport across the nerve membrane. VI. Free energy and activation free energies of conformational change. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[157]  R. H. Adrian,et al.  SOME DIELECTRIC PROPERTIES OF MUSCLE MEMBRANE AND THEIR POSSIBLE IMPORTANCE FOR EXCITATION‐CONTRACTION COUPLING fn1 , 1975, Annals of the New York Academy of Sciences.