Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque

The cutting forces generated in metal cutting have a direct influence on generation heat, tool wear or failure, quality of machined surface and accuracy of the work piece. In this study, a milling dynamometer that can measure static and dynamic cutting forces, and torque by using strain gauge and piezo-electric accelerometer has been designed and constructed. The orientation of octagonal rings and strain gauge locations has been determined to maximise sensitivity and to minimise cross-sensitivity. The force and torque signals were captured and processed using proper data acquisition system. The dynamometer has been subjected to a series of tests to determine its static and dynamic characteristics. The results obtained showed that the dynamometer could be used reliably to measure static and dynamic cutting forces and torque.