Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism.

[1]  Yi Wang,et al.  Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  Zhe Chen,et al.  Traditional Chinese Medicine Injections Combined With Oseltamivir for Influenza: Systematic Review and Network Meta-Analysis , 2022, Frontiers in Pharmacology.

[3]  D. Donno,et al.  Bio-guided isolation of androsta-1,4-dien-3,16-dione as a vasodilator active principle from the inflorescence of Ravenala madagascariensis Sonn. (Strelitziaceae) , 2022, Natural product research.

[4]  Hung Kay Lee,et al.  Anti-influenza mechanism of phenolic phytochemicals from Canarium album (Lour.) DC. leaf extract. , 2022, Journal of ethnopharmacology.

[5]  D. Veesler,et al.  Structure-based design of stabilized recombinant influenza neuraminidase tetramers , 2021, Nature Communications.

[6]  R. Webby,et al.  The evolution and future of influenza pandemic preparedness , 2021, Experimental & Molecular Medicine.

[7]  Hongwei Gao,et al.  Oleuropein Attenuates Lipopolysaccharide-Induced Acute Kidney Injury In Vitro and In Vivo by Regulating Toll-Like Receptor 4 Dimerization , 2021, Frontiers in Pharmacology.

[8]  Hongwei Gao,et al.  Nuezhenide Exerts Anti-Inflammatory Activity through the NF-κB Pathway , 2020, Current molecular pharmacology.

[9]  Suxiang Feng,et al.  Ethanol extracts from Ilex pubescens promotes cerebral ischemic tolerance via modulation of TLR4-MyD88/TRIF signaling pathway in rats. , 2020, Journal of ethnopharmacology.

[10]  P. Shaw,et al.  Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. , 2020, Journal of ethnopharmacology.

[11]  Zhongxiang Zhao,et al.  Botany, traditional uses, phytochemistry, pharmacology and toxicology of Ilex pubescens Hook et Arn. , 2019, Journal of ethnopharmacology.

[12]  Nicolas James Ho,et al.  Evaluation of potential herb-drug interactions between oseltamivir and commonly used anti-influenza Chinese medicinal herbs , 2019, Journal of Ethnopharmacology.

[13]  D. Ghareeb,et al.  Implementation of the Chou-Talalay method for studying the in vitro pharmacodynamic interactions of binary and ternary drug combinations on MDA-MB-231 triple negative breast cancer cells , 2019, Synergy.

[14]  L. Brown,et al.  Influenza Virus Neuraminidase Structure and Functions , 2019, Front. Microbiol..

[15]  S. Schultz-Cherry,et al.  Development of a Universal Influenza Vaccine , 2019, The Journal of Immunology.

[16]  Qiqin Wang,et al.  Magnetic beads-based neuraminidase enzyme microreactor as a drug discovery tool for screening inhibitors from compound libraries and fishing ligands from natural products. , 2018, Journal of chromatography. A.

[17]  Hua Zhou,et al.  Pubescenosides E–K, Seven New Triterpenoid Saponins from the Roots of Ilex pubescens and Their Anti-Inflammatory Activity , 2018, Molecules.

[18]  Shile Huang,et al.  Host Immune Response to Influenza A Virus Infection , 2018, Front. Immunol..

[19]  R. Webster,et al.  Influenza Virus: Dealing with a Drifting and Shifting Pathogen. , 2018, Viral immunology.

[20]  M. Hussain,et al.  Drug resistance in influenza A virus: the epidemiology and management , 2017, Infection and drug resistance.

[21]  M. Teixeira,et al.  The inflammatory response triggered by Influenza virus: a two edged sword , 2017, Inflammation Research.

[22]  G. Wolber,et al.  Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase. , 2014, Bioorganic & medicinal chemistry letters.

[23]  M. Killian Hemagglutination assay for influenza virus. , 2014, Methods in molecular biology.

[24]  J. McKimm-Breschkin,et al.  Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance , 2013, Influenza and other respiratory viruses.

[25]  Xu-dong Xu,et al.  Anti-hyperlipidemic caffeoylquinic acids from the fruits of Pandanus tectorius Soland , 2013 .

[26]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[27]  H. Isoda,et al.  Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. , 2011, Chemical & pharmaceutical bulletin.

[28]  R. Webster,et al.  Combination Chemotherapy for Influenza , 2010, Viruses.

[29]  T. Chou Drug combination studies and their synergy quantification using the Chou-Talalay method. , 2010, Cancer research.

[30]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[31]  J. Chou,et al.  Mechanism of drug inhibition and drug resistance of influenza A M2 channel , 2009, Proceedings of the National Academy of Sciences.

[32]  Liang Liu,et al.  Two New Triterpene Saponins from the Anti‐Inflammatory Saponin Fraction of Ilex pubescens Root , 2008, Chemistry & biodiversity.

[33]  Alan J. Hay,et al.  Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants , 2008, Nature.

[34]  C. Bridges,et al.  The annual impact of seasonal influenza in the US: measuring disease burden and costs. , 2007, Vaccine.

[35]  Yong Sup Lee,et al.  Identification of New Dicaffeoylquinic Acids from Chrysanthemum morifolium and their Antioxidant Activities , 2005, Planta medica.

[36]  K. Hase,et al.  Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. , 1996, Biological & pharmaceutical bulletin.

[37]  I. Merfort Caffeoylquinic acids from flowers of Arnica montana and Arnica chamissonis , 1992 .

[38]  T. F. Smith,et al.  Replication and plaque assay of influenza virus in an established line of canine kidney cells. , 1968, Applied microbiology.