Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones

Constructing physiologically relevant compartmental models of neurones is critical for understanding neuronal activity and function. We recently suggested that measurements from multiple locations along the soma, dendrites and axon are necessary as a data set when using a genetic optimization algorithm to constrain the parameters of a compartmental model of an entire neurone. However, recordings from L5 pyramidal neurones can routinely be performed simultaneously from only two locations. Now we show that a data set recorded from the soma and apical dendrite combined with a parameter peeling procedure is sufficient to constrain a compartmental model for the apical dendrite of L5 pyramidal neurones. The peeling procedure was tested on several compartmental models showing that it avoids local minima in parameter space. Based on the requirements of this analysis procedure, we designed and performed simultaneous whole‐cell recordings from the soma and apical dendrite of rat L5 pyramidal neurones. The data set obtained from these recordings allowed constraining a simplified compartmental model for the apical dendrite of L5 pyramidal neurones containing four voltage‐gated conductances. In agreement with experimental findings, the optimized model predicts that the conductance density gradients of voltage‐gated K+ conductances taper rapidly proximal to the soma, while the density gradient of the voltage‐gated Na+ conductance tapers slowly along the apical dendrite. The model reproduced the back‐propagation of the action potential and the modulation of the resting membrane potential along the apical dendrite. Furthermore, the optimized model provided a mechanistic explanation for the back‐propagation of the action potential into the apical dendrite and the generation of dendritic Na+ spikes.

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[3]  Idan Segev,et al.  Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes , 1985 .

[4]  J. Clements,et al.  Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. , 1989, The Journal of physiology.

[5]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[6]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[8]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[9]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[10]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[11]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[12]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[13]  D. Prince,et al.  Development of BK channels in neocortical pyramidal neurons. , 1996, Journal of neurophysiology.

[14]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[15]  J Bischofberger,et al.  Action potential propagation into the presynaptic dendrites of rat mitral cells , 1997, The Journal of physiology.

[16]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[17]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[18]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[19]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[20]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[21]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[22]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[23]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[24]  G M Shepherd,et al.  Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. , 1997, Science.

[25]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[26]  J. Bower,et al.  The Book of GENESIS , 1998, Springer New York.

[27]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[28]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[29]  J. Magee Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[30]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[31]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[33]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[34]  Nicholas T. Carnevale,et al.  Expanding NEURON's Repertoire of Mechanisms with NMODL , 2000, Neural Computation.

[35]  B. Sakmann,et al.  Voltage‐gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients , 2000, The Journal of physiology.

[36]  R. Maex,et al.  Introduction to Equation Solving and Parameter Fitting , 2000 .

[37]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[38]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[39]  A. Momiyama,et al.  Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord , 2000, The Journal of physiology.

[40]  J M Bekkers,et al.  Distribution and activation of voltage‐gated potassium channels in cell‐attached and outside‐out patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[41]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[42]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[43]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[44]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[45]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[46]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[47]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[48]  E. Marder,et al.  Failure of averaging in the construction of a conductance-based neuron model. , 2002, Journal of neurophysiology.

[49]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[50]  Gordon M Shepherd,et al.  Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. , 2002, Journal of neurophysiology.

[51]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[52]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[53]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[54]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[55]  D. Johnston,et al.  Active dendrites, potassium channels and synaptic plasticity. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[57]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[58]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[59]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[60]  John Guckenheimer,et al.  An Improved Parameter Estimation Method for Hodgkin-Huxley Models , 1999, Journal of Computational Neuroscience.

[61]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[62]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[63]  Noam Peled,et al.  Constraining compartmental models using multiple voltage recordings and genetic algorithms. , 2005, Journal of neurophysiology.

[64]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[65]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[66]  T. Berger,et al.  Homogeneous distribution of large‐conductance calcium‐dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons , 2005, The European journal of neuroscience.

[67]  Daniel Johnston,et al.  Plasticity of dendritic function , 2005, Current Opinion in Neurobiology.

[68]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[69]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[70]  G. Baranauskas,et al.  Sodium Currents Activate without a Hodgkin and Huxley-Type Delay in Central Mammalian Neurons , 2006, The Journal of Neuroscience.

[71]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[72]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[73]  Christof Koch,et al.  Using extracellular action potential recordings to constrain compartmental models , 2007, Journal of Computational Neuroscience.

[74]  Eve Marder,et al.  Structure and visualization of high-dimensional conductance spaces. , 2006, Journal of neurophysiology.

[75]  Michael L. Hines,et al.  Parallel network simulations with NEURON , 2006, Journal of Computational Neuroscience.

[76]  William R. Holmes,et al.  Fitting experimental data to models that use morphological data from public databases , 2006, Journal of Computational Neuroscience.

[77]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[78]  T. Sejnowski,et al.  Mapping function onto neuronal morphology. , 2007, Journal of neurophysiology.

[79]  Alon Korngreen,et al.  Dendritic voltage‐gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats , 2007, The Journal of physiology.

[80]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[81]  Alon Korngreen,et al.  A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm , 2007, PLoS Comput. Biol..

[82]  Allen I. Selverston,et al.  Models Wagging the Dog: Are Circuits Constructed with Disparate Parameters? , 2007, Neural Computation.

[83]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[84]  Lorin S Milescu,et al.  Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. , 2008, Biophysical journal.

[85]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[86]  Susan L. Wearne,et al.  Neuronal Firing Sensitivity to Morphologic and Active Membrane Parameters , 2007, PLoS Comput. Biol..

[87]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[88]  Erik De Schutter Why Are Computational Neuroscience and Systems Biology So Separate? , 2008, PLoS Comput. Biol..

[89]  William R. Holmes,et al.  A Classification Method to Distinguish Cell-Specific Responses Elicited by Current Pulses in Hippocampal CA1 Pyramidal Cells , 2008, Neural Computation.

[90]  Thomas K. Berger,et al.  Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data , 2008, Biological Cybernetics.

[91]  T. Berger,et al.  Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons , 2009, Pflügers Archiv - European Journal of Physiology.

[92]  Allen I. Selverston,et al.  Probing the Dynamics of Identified Neurons with a Data-Driven Modeling Approach , 2008, PloS one.

[93]  J. A. Bewer The Book of Genesis , 2011 .