Texture segmentation based on MRMRF modeling

Texture segmentation remains a fundamental issue in low-level image analysis, pattern recognition and computer vision. Texture segmentation problem can be solved in two directions: model fitting and non-parametric classification. In this paper, we propose to use multiresolution MRF (MRMRF) modeling in texture segmentation. A novel MRMRF parameter estimation method based on MCMC approach is presented. The experimental result shows that the method is suitable to segment textured images.

[1]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[2]  C. F. Osborne,et al.  Texture segmentation using multi-layered backpropagation , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[3]  Anil K. Jain,et al.  Segmentation of document images , 1989, SMC.

[4]  Robert L. Cannon,et al.  Iterative fuzzy image segmentation , 1985, Pattern Recognit..

[5]  Anil K. Jain,et al.  Segmentation and Classification of Range Images , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Wang. Lei Texture modeling and pattern analysis using statistical approach , 2000 .

[7]  Jun Liu,et al.  Texture classification using multiresolution Markov random field models , 1999, Pattern Recognit. Lett..

[8]  C. A. Murthy,et al.  Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique , 1990, Pattern Recognit. Lett..

[9]  S.Z. Li,et al.  Texture classification using wavelet decomposition with Markov random field models , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[10]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Computer Graphics and Image Processing.

[11]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  MumfordDavid,et al.  Filters, Random Fields and Maximum Entropy (FRAME) , 1998 .

[13]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[14]  Rama Chellappa,et al.  Edge Detection and Linear Feature Extraction Using a 2-D Random Field Model , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[16]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[17]  Rama Chellappa,et al.  Multiresolution Gauss-Markov random field models for texture segmentation , 1997, IEEE Trans. Image Process..

[18]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[19]  Shmuel Peleg,et al.  A New Probabilistic Relaxation Scheme , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..