Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s̀o difference) with >50% larger cavities (≥2s̀o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.

[1]  P. Mouginis-Mark,et al.  Deep impact craters in the Isidis and southwestern Utopia Planitia regions of Mars: High target material strength as a possible cause , 2006 .

[2]  N. Barlow,et al.  The role of volatiles and atmospheres on Martian impact craters , 2005 .

[3]  Jeffrey S. Kargel,et al.  Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars , 2005 .

[4]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[5]  S. Baloga,et al.  Comparing landslides to fluidized crater ejecta on Mars , 2005 .

[6]  James H. Roark,et al.  Buried impact craters: A topographic analysis of quasi‐circular depressions, Utopia Basin, Mars , 2005 .

[7]  P. Mouginis-Mark,et al.  Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships , 2005 .

[8]  N. Mangold,et al.  Evidence for Removal Episode on Northern Plains from the Martian Fluidized Ejecta Volume , 2005 .

[9]  Paul D. Spudis,et al.  36th Lunar and Planetary Science Conference , 2005 .

[10]  S. Stewart,et al.  Impact Crater Geometries Provide Evidence for Ice-rich Layers at Low Latitudes on Mars , 2005 .

[11]  R. Craddock,et al.  CRATER DEGRADATION IN THE MARTIAN HIGHLANDS: MORPHOMETRIC ANALYSIS OF THE SINUS SABAEUS REGION AND SIMULATION MODELING SUGGEST FLUVIAL PROCESSES. N. Forsberg-Taylor , 2004 .

[12]  R. Phillips,et al.  Mechanics of Utopia Basin on Mars , 2004 .

[13]  P. Schultz,et al.  Experimental ejection angles for oblique impacts: Implications for the subsurface flow‐field , 2004 .

[14]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[15]  G. Valiant,et al.  Martian Surface Properties: Inferences from Resolved Differences in Crater Geometries , 2004 .

[16]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[17]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[18]  J. Garvin,et al.  Craters on Mars: Global Geometric Properties from Gridded MOLA Topography , 2003 .

[19]  H. Melosh,et al.  Martian Meteorite Launch: High-Speed Ejecta from Small Craters , 2002, Science.

[20]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[21]  J. Garvin,et al.  Global Geometric Properties of Martian Impact Craters , 2002 .

[22]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[23]  J. Head,et al.  Utopia Basin, Mars: Characterization of topography and morphology and assessment of the origin and evolution of basin internal structure , 2001 .

[24]  T. Ahrens,et al.  The Relationship Between Rampart Crater Morphologies and the Amount of Subsurface Ice , 2001 .

[25]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[26]  François Costard,et al.  Standardizing the nomenclature of Martian impact crater ejecta morphologies , 2000 .

[27]  James B. Garvin,et al.  North Polar Region Craterforms on Mars: Geometric Characteristics from the Mars Orbiter Laser Altimeter , 2000 .

[28]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[29]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[30]  H. Melosh,et al.  Melt Production in Oblique Impacts , 1999 .

[31]  James B. Garvin,et al.  Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter , 1998 .

[32]  P. Schultz,et al.  Lobateness of impact ejecta deposits from atmospheric interactions , 1998 .

[33]  H. Frey,et al.  MOLA TOPOGRAPHY AND THE ISIDIS BASIN: CONSTRAINTS ON BASIN CENTER AND RING DIAMETERS , 1998 .

[34]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[35]  T. Ahrens,et al.  Planetary cratering mechanics , 1993 .

[36]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[37]  Robert A Kolvoord,et al.  Collision lifetimes and impact statistics of near-Earth asteroids , 1993 .

[38]  Peter H. Schultz,et al.  Atmospheric effects on ejecta emplacement , 1992 .

[39]  Nadine G. Barlow,et al.  Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain , 1990 .

[40]  H. Frey,et al.  Are Noachian-age ridged plains (Nplr) actually Early Hesperian in age?. [Mars volcanology] , 1990 .

[41]  Richard J. Pike,et al.  Geomorphology of impact craters on Mercury , 1988 .

[42]  K. Holsapple,et al.  Point source solutions and coupling parameters in cratering mechanics , 1987 .

[43]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[44]  Thomas J. Ahrens,et al.  Impact on the earth, ocean and atmosphere , 1987 .

[45]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[46]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[47]  J. Garvin,et al.  A geometric model for excavation and modification at terrestrial simple impact craters , 1984 .

[48]  Ronald Greeley,et al.  Pedestal craters on Ganymede , 1982 .

[49]  K. A. Holsapple,et al.  On the Scaling of Crater Dimensions 2. Impact Processes , 1982 .

[50]  P. Mouginis-Mark Ejecta emplacement and modes of formation of Martian fluidized ejecta craters , 1981 .

[51]  D. J. Milton,et al.  Morphology of Lonar Crater, India: Comparisons and implications , 1980 .

[52]  M. Cintala,et al.  Martian fresh crater depths - More evidence for subsurface volatiles , 1980 .

[53]  P. Schultz,et al.  The Development of the Ejecta Plume in a Laboratory-Scale Impact Cratering Event , 1980 .

[54]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[55]  S. K. Croft,et al.  Cratering flow fields - Implications for the excavation and transient expansion stages of crater formation , 1980 .

[56]  D. F. Merriam,et al.  Annual review of earth and planetary sciences v. 7, Editor: F. A. Donath; Associate Editors: F. G. Stehli, and G. W. Wetherill, Annual Reviews, Inc., 4139 El Camino Way, Palo Alto, California, 94036, 1979, 517p., 17 (U.S.), 17.50 elsewhere , 1980 .

[57]  D. Gault,et al.  Atmospheric effects on Martian ejecta emplacement , 1979 .

[58]  P. Schultz,et al.  Calculational investigation of impact cratering dynamics - Early time material motions , 1979 .

[59]  D. Gault,et al.  Exploratory experiments of impact craters formed in viscous-liquid targets: Analogs for Martian rampart craters? , 1978 .

[60]  P. Mouginis-Mark Morphology of martian rampart craters , 1978, Nature.

[61]  R. Greeley,et al.  Martian impact craters and emplacement of ejecta by surface flow , 1977 .

[62]  Richard J. Pike,et al.  Size-dependence in the shape of fresh impact craters on the moon , 1977 .

[63]  D. E. Maxwell,et al.  Simple Z model for cratering, ejection, and the overturned flap. , 1976 .

[64]  V. Oberbeck The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy , 1975 .

[65]  Verne R. Oberbeck,et al.  Thickness determinations of the lunar surface layer from lunar impact craters. , 1968 .