A Partially Augmented Lagrangian Method for Low Order ${\rm H}$-Infinity Controller Synthesis Using Rational Constraints

This technical note proposes a method for low order H-infinity synthesis where the constraint on the order of the controller is formulated as a rational equation. The resulting nonconvex optimization problem is then solved by applying a partially augmented Lagrangian method. The proposed method is evaluated together with two well-known methods from the literature. The results indicate that the proposed method has comparable performance and speed.

[1]  Pierre Apkarian,et al.  Robust Control via Sequential Semidefinite Programming , 2002, SIAM J. Control. Optim..

[2]  C. Guaranteed Margins for LQG Regulators , 1972 .

[3]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[4]  H. Wolkowicz A Constrained Matrix Optimization Problem , 1981 .

[5]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[6]  Pierre Apkarian,et al.  Partially Augmented Lagrangian Method for Matrix Inequality Constraints , 2004, SIAM J. Optim..

[7]  Michael L. Overton,et al.  Multiobjective robust control with HIFOO 2.0 , 2009, 0905.3229.

[8]  H. Luetkepohl The Handbook of Matrices , 1996 .

[9]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[10]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[11]  T. Başar Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .

[12]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  Pierre Apkarian,et al.  An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[15]  Daniel Ankelhed,et al.  On design of low order H-infinity controllers , 2011 .

[16]  P. Apkarian,et al.  Fixed‐order H∞ control design via a partially augmented Lagrangian method , 2003 .

[17]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[18]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[19]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[20]  S. Gumussoy,et al.  Fixed-order H∞ controller design via HIFOO, a specialized nonsmooth optimization package , 2008, 2008 American Control Conference.

[21]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[22]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[23]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[24]  F. Leibfritz COMPleib: COnstrained Matrix–optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems , 2006 .

[25]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[26]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[27]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[28]  Necati Özdemir,et al.  State-space solutions to standard H? control problem , 2002 .

[29]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[30]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[31]  W. Marsden I and J , 2012 .

[32]  Anders Helmersson,et al.  A Primal-Dual Method for Low Order H-Infinity Controller Synthesis , 2010 .

[33]  Pierre Apkarian,et al.  Nonsmooth μ synthesis , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[34]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[35]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[36]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[37]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[38]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[39]  Anders Helmersson On Polynomial Coefficients and Rank Constraints , 2009 .

[40]  Anders Helmersson,et al.  A Quasi-Newton Interior Point Method for Low Order H-Infinity Controller Synthesis , 2011, IEEE Transactions on Automatic Control.