Convergent Iterative Feedback Tuning of State Feedback-Controlled Servo Systems

This paper presents a new Iterative Feedback Tuning (IFT)-based optimal state feedback control solution dedicated to a class of second-order servo systems with integral component. The state feedback controllers for these controlled plants are extended with an integrator to ensure the rejection of constant load type disturbances. Original IFT algorithms are suggested for the accepted state feedback controllers such that to set the step size in order to guarantee the convergence. An attractive convergence theorem based on the application of Popov’s hypertability theory to the parameter update law in the IFT algorithms is offered. The theoretical results are validated by a case study concerning the position control of a DC servo system with backlash. Implementation issues are discussed and exemplified by real-time experimental results.

[1]  S.M. Savaresi,et al.  Analysis and design of an automatic motion inverter , 2006, IEEE/ASME Transactions on Mechatronics.

[2]  Håkan Hjalmarsson,et al.  Iterative feedback tuning of linear time-invariant MIMO systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[3]  Claudia-Adina Dragos,et al.  Iterative Feedback Tuning Approach to a Class of State Feedback-Controlled Servo Systems , 2009, ICINCO-ICSO.

[4]  Kazuo Tanaka,et al.  Parallel Distributed Compensation Based Stabilization of A 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach , 2009, J. Adv. Comput. Intell. Intell. Informatics.

[5]  Jin-Hua She,et al.  Intelligent Decoupling Control of Gas Collection Process of Multiple Asymmetric Coke Ovens , 2009, IEEE Transactions on Industrial Electronics.

[6]  József K. Tar,et al.  Fuzzy Control System Performance Enhancement by Iterative Learning Control , 2008, IEEE Transactions on Industrial Electronics.

[7]  N. K. Poulsen,et al.  Improving Convergence of Iterative Feedback Tuning , 2009 .

[8]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[9]  Jakob Kjøbsted Huusom,et al.  Data Driven Tuning of State Space Control loops with unknown state information and model uncertainty. , 2009 .

[10]  Daniel Hladek,et al.  MULTI-ROBOT CONTROL SYSTEM FOR PURSUIT-EVASION PROBLEM , 2009 .

[11]  Kyoung Kwan Ahn,et al.  Inverse Double NARX Fuzzy Modeling for System Identification , 2010, IEEE/ASME Transactions on Mechatronics.

[12]  Murat Barut,et al.  Experimental Evaluation of Braided EKF for Sensorless Control of Induction Motors , 2008, IEEE Transactions on Industrial Electronics.

[13]  Igor Skrjanc,et al.  Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study , 2007, J. Intell. Robotic Syst..

[14]  Chih-Lyang Hwang Microprocessor-Based Fuzzy Decentralized Control of 2-D Piezo-Driven Systems , 2008, IEEE Transactions on Industrial Electronics.

[15]  Håkan Hjalmarsson,et al.  Gradient approximations in iterative feedback tuning for multivariable processes , 2004 .

[16]  Hideki Hashimoto,et al.  Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem , 2007, IEEE Transactions on Industrial Electronics.

[17]  S. Gunnarsson,et al.  A convergent iterative restricted complexity control design scheme , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  Tore Hägglund,et al.  Benchmark systems for PID control , 2000 .

[19]  Drago Matko,et al.  Wheeled Mobile Robots Control in a Linear Platoon , 2009, J. Intell. Robotic Syst..

[20]  Kevin Kok Wai Wong,et al.  Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[21]  Rolf Isermann,et al.  Mechatronic Systems: Fundamentals , 2003 .

[22]  Kenzo Nonami,et al.  Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot , 2007, Inf. Sci..

[23]  S. Kissling,et al.  Application of iterative feedback tuning (IFT) to speed and position control of a servo drive , 2009 .

[24]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  H. Hjalmarsson Efficient tuning of linear multivariable controllers using iterative feedback tuning , 1999 .

[26]  S. Preitl,et al.  Design and Experiments for a Class of Fuzzy Controlled Servo Systems , 2008, IEEE/ASME Transactions on Mechatronics.

[27]  Diego Eckhard,et al.  Optimizing the convergence of data-based controller tuning , 2009 .

[28]  S. Kovács,et al.  A Brief Survey and Comparison on Various Interpolation Based Fuzzy Reasoning Methods , 2006 .

[29]  Teresa Orlowska-Kowalska,et al.  Damping of Torsional Vibrations in Two-Mass System Using Adaptive Sliding Neuro-Fuzzy Approach , 2008, IEEE Transactions on Industrial Informatics.